CURSO DE NIVELACIÓN 2012

EJERCITARIO TEÓRICO DE INTRODUCCIÓN A LA FÍSICA

ENERO - 2012

Universidad Nacional de Asunción Facultad de Ingeniería "Tradición y Excelencia en la Formación de Ingenieros"

MAGNITUDES Y VECTORES

 Es una magnitud fur La fuerza. La aceleración. La longitud. La rapidez. Es/son correcta/s: 	ndamental del SI de	e unidades de medio	la:	
A) 1 y 2	B) Sólo 2	C) Sólo 3	D) 1 y 4	E) 3 y 4
 La expresión g m l La masa La fuerza La rapidez La velocidad Es/son correcta/s: A) Sólo 3 	h^{-2} , donde g represonable. B) Sólo 2	enta a gramo, <i>m</i> a n C) Sólo 1	netro y <i>h</i> a hora, mie D) Sólo 4	de: E) 3 y 4
3. El símbolo de la uni 1. K 2. kgf 3. m/s 4. cd Es/son correcta/s: A) Sólo 4	idad de medida de u B) Sólo 3	una magnitud deriva C) 2 y 3	ada del SI es: D) 1 y 4	E) 1 y 2
 4. En la ecuación dada velocidad y z el tien 1. 10 2. 100 3. 0,01 4. 0,1 Es/son correcta/s: A) Sólo 3 				ón de una partícula, <i>a</i> la sistema CGS , es: E) 1 y 2
B) el valor numé C) el valor numé D) el valor numé	ial, es aquélla que q érico y la unidad de érico, la unidad de n érico, la unidad de n érico, la dirección y nedida, la dirección	medida nedida, la dirección nedida y la direcció el sentido	-	
 6. De las magnitudes i 1. La masa. 2. La velocidad. 3. La rapidez. 4. La longitud. Es/son correcta/s: A) Sólo 1 	ndicadas a continua B) Sólo 2	ción, son vectoriale C) Sólo 3	es: D) Sólo 4	E) 2 y 3
 La magnitud deriva La masa. La longitud. La aceleración. La intensidad lus Es/son correcta/s: 				
A) Sólo 3	B) Sólo 2	C) 2 y 4	D) Sólo 4	E) 1 y 3

Campus Universitario – San Lorenzo - Paraguay

Universidad Nacional de Asunción Facultad de Ingeniería "Tradición y Excelencia en la Formación de Ingenieros"

 La expresión kgf n La masa. La fuerza. La rapidez. La velocidad. Es/son correcta/s: 	$n^{-1} s^2$, donde kgf 1	representa a kilogra	amo fuerza, <i>m</i> a me	tro y s a segundos, mide:
A) Sólo 1	B) Sólo 3	C) Sólo 2	D) Sólo 4	E) 3 y 4
9. El símbolo de la un 1. N 2. kgf 3. kg 4. m/s Es/son correcta/s:	idad de medida de 1	una magnitud funda	nmental del SI es:	
A) Sólo 3	B) Sólo 2	C) Sólo 1	D) 1 y 3	E) 1 y 2
B) el valor numo C) el valor numo D) el valor numo	r, es aquélla que qu érico y la unidad de érico, la unidad de r érico, la unidad de r érico, la dirección y medida, la dirección	medida medida, la dirección medida y la dirección el sentido	•	
 De las magnitudes La masa. El desplazamien La aceleración. La rapidez. Es/son correcta/s: 	ito.			
A) 1 y 2	B) Sólo 2	C) Sólo 4	D) 1 y 4	E) 2 y 3
unas de otras.	damentales son aqui $s = a t^3 + b t^2 + cu$ metro. a magnitud fundame	t + d, donde s se exertal del SI .	xpresa en metro y <i>t</i>	ión, como independientes en segundo, la unidad de
A) Sólo 1	B) 2 y 3	C) 1 y 4	D) Sólo 4	E) Sólo 3
la dirección.	ectorial es aquélla o	_		ico, la unidad de medida y
			na <i>masa-longitud-ti</i>	iempo, es $M L^2 T^{-2}$.
3. La fuerza es una4. El símbolo de la	•		ndamental del SI e	s <i>K</i> .
Es/son correcta/s: A) Sólo 3	B) Sólo 4	C) 2 y 4	D) 1 y 4	E) 1 y 3
14. Sean las siguientes 1. El SI es un siste 2. La aceleración e 3. El radián es una 4. La masa, la rapi Es/son correcta/s:	afirmaciones: ma de magnitudes. es una magnitud der magnitud fundame dez y el desplazami	ivada del SI . ntal del SI . ento son magnitude	es escalares.	
A) Sólo 1	B) Sólo 3	C) 2 y 4	D) 1 y 4	E) 2 y 3

"Tradición y Excelencia en la Formación de Ingenieros"

15. Sean las siguientes afirmaciones:

- 1. El módulo de la diferencia vectorial de los vectores $\bf A$ y $\bf B$ es $\sqrt{A^2 + B^2 2AB\cos\alpha}$, siendo $\bf A$ y $\bf B$ los módulos de los vectores y $\bf \alpha$ el ángulo agudo que forman.
- 2. En el álgebra vectorial la suma de dos vectores es conmutativo.
- 3. Las magnitudes fundamentales del sistema **CGS** son tres.
- 4. La expresión $kgf \cdot l \cdot cm^{-2}$, donde kgf representa a kilogramo fuerza, l a litro y cm a centímetro, mide el momento de una fuerza.

Es/son correcta/s:

A) Sólo 3

B) 1 y 3

C) 2 y 4

D) 1 y 2

E) Sólo 1

16. Sean las siguientes afirmaciones:

1. En el **SI**, la constante de gravitación universal es $G = 6.67 \times 10^{-11} \frac{N.m^2}{kg^2}$. En un sistema en que

las unidades fundamentales son el kilómetro (km), la tonelada (t) y la hora (h), su valor es

$$G = 12,96 \frac{km^3}{t \cdot h^2}.$$

- 2. La velocidad, la fuerza y la aceleración son magnitudes vectoriales.
- 3. Las magnitudes fundamentales del SI son cinco.
- 4. Dada la expresión $\frac{HP}{Hz}$, el factor de conversión al **SI**, es 764.

Es/son correcta/s:

A) Sólo 2

B) Sólo 4

C) Sólo 1

D) 2 y 3

E) 3 y 4

17. Sean las siguientes afirmaciones:

- 1. El producto de un escalar cualquiera por un vector siempre es otro vector que tiene su mismo sentido
- 2. El módulo de la suma de dos vectores cualesquiera no puede ser mayor que la suma de los módulos de los vectores dados, ni menor que su diferencia.
- 3. Al multiplicar vectorialmente dos vectores se obtiene otro vector en el mismo plano.
- 4. El producto escalar de los vectores \mathbf{A} y \mathbf{B} es $AB\cos\alpha$, siendo \mathbf{A} y \mathbf{B} los módulos de los vectores y $\mathbf{\alpha}$ el ángulo agudo que forman.

Es/son correcta/s:

A) 1 y 3

B) 2 y 3

C) Sólo 2

D) 1 y 4

E) 2 y 4

18. Sean las siguientes afirmaciones:

- 1. En el álgebra vectorial, el producto vectorial de un vector por la diferencia de otros dos, no es distributivo.
- 2. El producto escalar de dos vectores puede ser negativo.
- 3. El módulo de la diferencia de dos vectores cualesquiera puede ser mayor que la suma de los módulos de los vectores dados y menor que su diferencia.
- 4. El módulo de la suma vectorial de los vectores $\bf A$ y $\bf B$ es $\sqrt{A^2 + B^2 + 2AB\cos\alpha}$, siendo $\bf A$ y $\bf B$ los módulos de los vectores y $\bf \alpha$ el ángulo agudo que forman.

Es/son correcta/s:

A) Sólo 3

B) 1 y 2

C) 2 y 4

D) Sólo 4

E) 3 y 4

19. Sean las siguientes afirmaciones:

- 1. El símbolo de la unidad de medida de una magnitud fundamental del SI es kg.
- 2. El producto vectorial es conmutativo.
- 3. En el álgebra vectorial, el producto escalar de un vector por la diferencia de otros dos vectores, es distributivo.
- 4. El producto de un escalar positivo por un vector siempre es otro vector que tiene sentido contrario.

Es/son correcta/s:

A) 3 y 4

B) Sólo 3

C) 1 y 3

D) 1 y 4

E) 2 y 3

"Tradición y Excelencia en la Formación de Ingenieros"

ESTÁTICA

20).	C	on	re	lacio	on	al	equ1	librio	de	un	cuerpo,	se	afırma	que:
----	----	---	----	----	-------	----	----	------	--------	----	----	---------	----	--------	------

- 1. El equilibrio es estable cuando al mover un cuerpo de la posición inicial de equilibrio, el peso tiene un momento con respecto al apoyo que hace que el cuerpo no vuelva a su posición inicial.
- 2. El equilibrio es indiferente cuando al mover un cuerpo de la posición inicial de equilibrio, el peso sigue teniendo momento cero con respecto al apoyo y por lo tanto permanece en la nueva posición.
- 3. El equilibrio es inestable cuando al mover un cuerpo de la posición inicial de equilibrio, el peso tiene un momento con respecto al apoyo que hace que el cuerpo no vuelva a su posición inicial.
- 4. El equilibrio es estático cuando la fuerza resultante es cero.

Es/son correcta/s:				
A) 2 y 3	B) Sólo 1	C) Sólo 3	D) 1 y 4	E) 2 y 4

- 21. El coeficiente de rozamiento estático depende de:
 - 1. La fuerza normal.
 - 2. El ángulo de inclinación de la superficie.
 - 3. La naturaleza de las superficies.
 - 4. El área de contacto.

Es/son correcta/s:

A) Sólo 4 B) 1 y 2 C) 1 y 3 D) Sólo 3 E) 2 y 4

22.La primer Ley de Newton afirma que:

- 1. Todo cuerpo tiende a permanecer en reposo o con movimiento rectilíneo y uniforme hasta que una causa externa a ella le obligue a salir de dicho estado.
- 2. A toda acción corresponde una reacción de la misma dirección, mismo módulo pero de sentido contrario.
- 3. Toda fuerza produce sobre un cuerpo una aceleración de la misma dirección y sentido.
- 4. La fuerza de atracción entre dos cuerpos es directamente proporcional al producto de sus masas e inversamente proporcional al cuadrado de sus distancias.

Es/son correcta/s:

A) 1 y 4 B) Sólo 2 C) Sólo 3 D) Sólo 1 E) 2 y 4

23. Con relación al par de fuerzas o cupla, se afirma que:

- 1. Su efecto es el de producir una traslación.
- 2. Su módulo es el producto de una de las fuerzas por la distancia que separa a las dos fuerzas.
- 3. Son fuerzas paralelas, de módulos iguales y del mismo sentido.
- 4. Su efecto es el de producir una rotación.

Es/son correctas/s:

A) 2 y 4 B) Sólo 3 C) Sólo 4 D) 1 y 2 E) 2 y 3

24. Sean las siguientes afirmaciones:

- 1. Dos fuerzas cualesquiera pueden componerse dando una resultante que produzca el mismo efecto que ellas.
- 2. El momento de una fuerza con respecto a un punto es igual al producto del módulo de la fuerza por la distancia del punto a la recta de acción de la fuerza.
- 3. Dos fuerzas iguales y de sentido contrario están en equilibrio solamente si la línea de acción de ambas fuerzas es la misma.
- 4. La resultante de dos fuerzas paralelas es siempre una fuerza paralela a ambas.

Es/son correcta/s:

A) 2 y 4 B) 1 y 3 C) Sólo 3 D) Sólo 2 E) 1 y 4

Campus Universitario – San Lorenzo - Paraguay

Universidad Nacional de Asunción Facultad de Ingeniería "Tradición y Excelencia en la Formación de Ingenieros"

respecto a la horiz 1. La reacción del	ontal. Con relació l plano sobre el cu	n a la situación pla erpo es el peso del	nteada se afirma qu cuerpo.	sa, inclinada un ángulo α co ne: normal por el coeficiente o	
	al ejercida por el	plano sobre el cuer es directamente pro	_	_	
A) 1 y 4	B) Sólo 2	C) Sólo 1	D) Sólo 3	E) 1 y 3	
 Solamente una uniforme de un Un cuerpo con El par de acció fuerza normal e Es/son correcta/s: 	en equilibrio cuan fuerza externa p cuerpo. movimiento rectil ón y reacción del ejercida por el plan	líneo y uniforme se peso de un cuerpo no sobre el cuerpo.	stado de reposo o encuentra en equil , apoyado sobre u	de movimiento rectilíneo librio. na superficie horizontal es	•
A) Sólo 1	B) 2 y 3	C) Sólo 3	D) Sólo 4	E) 1 y 3	
2. Si su valor es c3. Si su valor es c	ero, el sistema no ero, el sistema se ero, el sistema se	e un sistema de fue se encuentra en equili encuentra en equili encuentra en equili encuentra en equili	uilibrio. brio de traslación. brio de rotación.	e: E) 2 y 4	
28.El coeficiente de r 1. El área de cont 2. El peso del cue 3. La naturaleza d 4. El ángulo de in Es/son correcta/s: A) Sólo 3	acto. rpo. le las superficies.	·	D) 1 y 4	E) 2 y 3	
causa externa le 2. A toda acción contrario. 3. Toda fuerza pre 4. La fuerza de a	ende a permanece e obligue a salir de le corresponde un oduce sobre un cu tracción entre dos	r en reposo o con r e dicho estado. na reacción del mi erpo una aceleració	smo módulo, misi in de la misma dire mente proporciona	neo y uniforme hasta que un ma dirección pero de sentic ección y sentido. al al producto de sus masas E) 2 y 4	do
 Con relación al mo El producto ese punto de aplica El producto ve aplicación de la El producto de El producto ve 	omento de una fue calar de la fuerza cción de la fuerza. ectorial del vector a fuerza, por la fue la fuerza por la di	por el vector que t r que tiene por ori erza. stancia del punto a	iene por origen el gen el punto dado la línea de acción	a que es: punto dado y por extremo o y por extremo el punto o	de
11) 5010 1	D) 5010 5	C) 5010 T	D_{f} 1 y \neg	L) 1 y 3	

TO COL MAN TO COL MAN

Campus Universitario – San Lorenzo - Paraguay

Universidad Nacional de Asunción Facultad de Ingeniería

"Tradición y Excelencia en la Formación de Ingenieros"

31.Si	un	cuerpo	de	peso	W,	apoyado	sobre	una	superficie	horizontal	rugosa,	se	encuentra	con
mo	vim	iento rec	ctilíı	neo y i	unifo	rme, pode	mos af	irmar	que:					

- 1. La reacción del plano sobre el cuerpo es igual al peso del cuerpo.
- 2. La fuerza de rozamiento dinámica es igual al producto de la fuerza normal por el coeficiente de rozamiento dinámico.
- 3. La fuerza normal ejercida por el plano sobre el cuerpo es el peso del cuerpo.
- 4. La fuerza de rozamiento dinámica es inversamente proporcional al peso del cuerpo.

Es/son correcta/s:

	\sim
7071	o 1
	Sól

B) 2 y 3

C) Sólo 2

D) 1 y 3

E) 2 v 4

32.La afirmación correcta es:

- A) dos fuerzas cualesquiera producen el mismo efecto sobre un cuerpo si tienen iguales el módulo y la dirección
- B) la condición suficiente para que un cuerpo esté en equilibrio de rotación es que la resultante de las fuerzas actuantes sea cero
- C) si un cuerpo de peso W, sometido a una fuerza inclinada al plano, está en reposo sobre una superficie horizontal rugosa, la reacción normal del plano sobre el cuerpo es su peso
- D) la resultante de dos fuerzas paralelas, desiguales y de sentido contrario, se encuentra más próxima a la mayor fuerza
- E) La fuerza de rozamiento cinética F_r cumple la siguiente relación $0 \le F_r \le \mu_k .N$, siendo μ_k el coeficiente de rozamiento cinético y N la fuerza normal al plano de deslizamiento.

33. Sean las siguientes afirmaciones:

- 1. A toda fuerza actuante sobre un cuerpo le corresponde otra opuesta.
- 2. Si al aplicar una fuerza sobre un cuerpo se observa que se mueve con velocidad constante, se concluye que actúa también sobre él, al menos, otra fuerza.
- 3. Si dos personas se empujan mutuamente sin desplazarse, la más fuerte ejercerá mayor fuerza que la más débil.
- 4. Si actúan fuerzas sobre un cuerpo, éste se moverá con velocidad constante.

Es/son correcta/s:

A) Sólo 2

B) Sólo 1

C) 1 y 2

D) 2 y 3

E) Sólo 4

34. Sean las siguientes afirmaciones:

- 1. El coeficiente de rozamiento dinámico siempre es mayor que el coeficiente de rozamiento estático.
- 2. La Tercera Ley de Newton establece que dos fuerzas actuando sobre un cuerpo pueden producir el equilibrio del cuerpo.
- 3. El momento de la fuerza resultante de un sistema de fuerzas coplanares, respecto a un punto, es igual a la suma de los momentos de las fuerzas componentes respecto al mismo punto.
- 4. El par de fuerzas o cupla está formado por fuerzas paralelas de módulos iguales, sentido contrario y actuando en puntos diferentes.

Es/son correcta/s:

A) 2 y 4

B) 3 y 4

C) Sólo 2

D) 1 y 3

E) Sólo 3

35. Sean las siguientes afirmaciones:

- 1. La inercia es la propiedad que tiene un cuerpo de oponerse a cualquier cambio de su estado de reposo o de movimiento rectilíneo uniforme.
- 2. El coeficiente de rozamiento dinámico entre un cuerpo y la superficie de deslizamiento es la relación entre la fuerza normal a la superficie de deslizamiento y la fuerza aplicada al cuerpo en movimiento.
- 3. La fuerza de rozamiento estática F_r cumple la siguiente relación $0 \le F_r \le \mu_s.N$, siendo μ_s el coeficiente de rozamiento estático y N la fuerza normal al plano de deslizamiento.
- 4. Dos fuerzas iguales y de sentido contrario siempre están en equilibrio.

Es/son correcta/s:

A) 2 y 3

B) Sólo 1

C) Sólo 4

D) 2 y 4

E) 1 y 3

Universidad Nacional de Asunción Facultad de Ingeniería "Tradición y Excelencia en la Formación de Ingenieros"

2	α .	1	•	•	C*	
36	Sean	lac	CIO	mentec	atirn	naciones:
50.	Dean	ias	315	uiciics	amin	naciones.

- 1. Si la resultante de un conjunto cualesquiera de fuerzas es cero, el sistema se encuentra en equilibrio de traslación.
- 2. El coeficiente de rozamiento dinámico es independiente del área geométrica de la superficie de apoyo y de la velocidad del movimiento.
- 3. La resultante de dos fuerzas paralelas, desiguales y del mismo sentido, se encuentra más próxima a la menor fuerza.

					l de equilibrio, el peso del uelva a su posición inicial
	A) 2 y 4	B) 1 y 3	C) Sólo 3	D) Sólo 4	E) 1 y 2
1. 2. 3.	Si no actúan fuer Un cuerpo está actuantes es cerc	dos fuerzas paralel rzas sobre un cuerp en equilibrio de t o con respecto a un	po ésta se moverá con raslación cuando lo punto cualquiera.		
	A) 1 y 4	B) Sólo 2	C) Sólo 4	D) 1 y 3	E) 2 y 3
 2. 3. 4. 	del cuerpo sigue nueva posición. Si el momento re equilibrio de rota El módulo del p mitad de la dista	indiferente cuando e teniendo momen esultante de un cor ación. par de fuerzas o cu ncia que separa a l	njunto cualesquiera upla es la suma de as dos fuerzas.	eto al apoyo y por de fuerzas es cero,	icial de equilibrio, el peso lo tanto permanece en la el sistema se encuentra en una de las fuerzas por la
	A) 3 y 4	B) 1 y 2	C) Sólo 2	D) 1 y 3	E) 2 y 3
1. 2. 3. 4. Es/	por el plano con cuerpo es su pes El momento de u punto dado y por La condición su actuantes sobre e El coeficiente de son correcta/s:	peso W apoyado so movimiento rectilo. una fuerza con resprestremo el punto aficiente para que a él sea cero. e rozamiento estátio	líneo y uniforme, la pecto a un punto es de aplicación de la un cuerpo esté en co depende del área	el producto del vec fuerza, por el vecto equilibrio es que la geométrica de la su	resultante de las fuerzas aperficie de apoyo.
	A) 2 y 3	B) Sólo 1	C) Sólo 4	D) 1 y 2	E) 1 y 4

"Tradición y Excelencia en la Formación de Ingenieros"

CINEMÁTICA

	40.La	afirmación	correcta	es:
--	-------	------------	----------	-----

- A) la trayectoria es la línea formada por los puntos que recorre un móvil al moverse con respecto a un sistema de referencia
- B) el desplazamiento es el vector suma entre la posición final y la posición inicial del móvil
- C) la velocidad media es el cociente entre el espacio recorrido y el intervalo de tiempo en que se produce dicho recorrido
- D) la velocidad instantánea es una magnitud escalar
- E) la velocidad se mide en m/s²

41. Sean las siguientes afirmaciones:

- 1. El vector velocidad es siempre tangente a la trayectoria.
- 2. La rapidez media es una magnitud escalar.
- 3. La rapidez media es el límite de la rapidez instantánea cuando el intervalo de tiempo tiende a cero.
- 4. La aceleración media es el cociente entre la variación de la posición del móvil y el intervalo de tiempo en que se produce dicha variación.

Es/son correcta/s:

A) 1 y 3 B) 2 y 4 C) 1 y 2 D) Sólo 4 E) 3 y 4

- 42. Con respecto al movimiento rectilíneo uniforme, se afirma que:
 - 1. La aceleración es paralela a la dirección del movimiento.
 - 2. El gráfico de la posición del móvil en función del tiempo es una parábola.
 - 3. El gráfico de la velocidad en función del tiempo es paralela al eje del tiempo.
 - 4. La ecuación de la velocidad del móvil en función del tiempo es $v = v_a$.

Es/son correcta/s:

A) 3 y 4

B) Sólo 3

C) 2 y 3

D) 1 y 4

E) 1 y 2

43. Con respecto al movimiento rectilíneo uniformemente variado, se afirma que:

- 1. La aceleración es constante.
- 2. Si es retardado el tiempo que tarda el móvil en detenerse es $t = \frac{V_o}{a}$
- 3. Si es ascendente, la altura máxima es $h_{\text{max}} = \frac{v_o^2}{g}$.
- 4. La posición del móvil en función del tiempo es $x = x_0 + v_0 t + at^2$

Es/son correcta/s:

A) 1 y 3

B) 2 y 4

C) Sólo 2

D) Sólo 1

E) 1 y 2

44. Con respecto al movimiento circular, se afirma que:

- 1. Las componentes intrínsecas de la aceleración son la aceleración normal y la aceleración centrípeta.
- 2. La aceleración normal es la que produce la variación de la dirección del movimiento.
- 3. El desplazamiento angular es la posición angular del móvil en un cierto intervalo de tiempo.
- 4. Los desplazamientos angulares infinitesimales son magnitudes vectoriales.

Es/son correcta/s:

A) 1 v 2

B) 1 y 3

C) Sólo 2

D) Sólo 4

E) 2 y 4

45. Con respecto al movimiento circular, se afirma que:

- 1. La velocidad angular media es una magnitud vectorial.
- 2. La aceleración angular instantánea es el límite de la aceleración angular media, cuando el intervalo de tiempo tiende a cero.
- 3. El espacio recorrido por un móvil es igual al producto del diámetro de la circunferencia por el desplazamiento angular.
- 4. La aceleración angular instantánea es una magnitud vectorial. Es/son correcta/s:

A) 1 y 4

B) 2 y 4

C) Sólo 3

D) 1 y 2

E) 2 y 3

"Tradición y Excelencia en la Formación de Ingenieros"

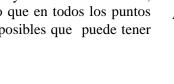
- 46. Con respecto al movimiento parabólico, se afirma que:
 - 1. El módulo de la velocidad vertical disminuye durante el ascenso.
 - 2. La ecuación de la trayectoria del móvil es $y = y_o + (tg\theta) x \frac{g x^2}{v_o^2 \cos^2 \theta}$
 - 3. La altura máxima que alcanza el móvil es $h_{máx} = \frac{{v_o}^2 \, sen^2 \theta}{\sigma}$
 - 4. En el punto de altura máxima, la velocidad es cero.

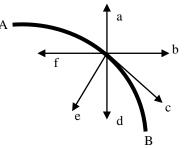
Es/son correctas/s:

- A) 2 y 4
- B) Sólo 1
- C) Sólo 4
- D) 1 v 2
- E) 2 y 3

47. Con respecto al movimiento parabólico, se afirma que:

- 1. El tiempo que emplea el móvil para su alcance máximo es $t_{máx} = \frac{v_o sen \theta}{a}$
- 2. La altura del móvil en función del tiempo es $y = y_o + v_o (sen \theta) t g t^2$
- 3. La velocidad vertical del móvil en función del tiempo es $v_y = v_o sen \theta g t$
- 4. Los ángulos de disparo para un mismo alcance y una misma velocidad inicial, son complementarios.


Es/son correcta/s:


- A) 2 y 4
- B) 1 y 3
- C) 3 y 4
- D) Sólo 2
- E) 1 y 4

48. Con respecto al movimiento parabólico, se afirma que:

- 1. Es la composición de dos movimientos perpendiculares.
- 2. El alcance horizontal del móvil es $\frac{{v_o}^2 \sin 2\theta}{q}$
- 3. El tiempo para que el móvil alcance la altura máxima es $t_{máx} = \frac{v_o sen \theta}{g}$
- 4. La aceleración del movimiento cambia de sentido durante el ascenso y el descenso. Es/son correcta/s:

49.Un punto material se mueve según una trayectoria curvilínea **AB**, como se muestra en la figura. Sabiendo que en todos los puntos de la trayectoria $\mathbf{v} \neq \mathbf{0}$, las direcciones posibles que puede tener el vector aceleración, son:

- A) a; d; e
- B) d; e; f
- C) a; b; c
- D) a; e; f
- E) c; d; e

50. Sean las siguientes afirmaciones:

- 1. En el movimiento rectilíneo uniforme, el área bajo la curva v = f(t), en el intervalo $(t_1 t_2)$, representa numéricamente el espacio recorrido por el móvil en dicho lapso.
- 2. En el movimiento rectilíneo uniformemente variado, la pendiente de la recta tangente a la curva v = f(t), en el instante t₁, representa numéricamente la velocidad del móvil en dicho instante.
- 3. En el movimiento rectilíneo uniforme, la pendiente de la recta tangente a la curva x = f(t), en el instante t₁, representa numéricamente la aceleración del móvil en dicho instante.
- 4. En el movimiento rectilíneo uniformemente variado, el área bajo la curva a = f(t), en el intervalo (t_1) - t₂), representa numéricamente la variación de la velocidad del móvil entre dichos instantes.

Es/son correcta/s:

- A) 2 y 4
- B) Sólo 1
- C) 1 y 4
- D) 1 y 2
- E) Sólo 4

"Tradición y Excelencia en la Formación de Ingenieros"

51. Sean las siguientes afirmaciones:

- 1. En el movimiento circular, la posición angular de un móvil es el ángulo que forma el vector posición del mismo con el origen de los ángulos.
- 2. La trayectoria descripta por un móvil, en el que el módulo de la aceleración es constante y su dirección es perpendicular a la velocidad, es rectilínea.
- 3. E el movimiento rectilíneo uniforme, el gráfico representativo de la velocidad de un móvil en función de su posición es una recta paralela al eje de las posiciones.
- 4. En el movimiento circular, la aceleración centrípeta es igual al cociente del cuadrado de la rapidez lineal por el radio de la circunferencia.

Es/son correcta/s:

A) Sólo 3

B) 1 y 4

C) 2 y 4 D) 1 y 3

E) 2 y 3

52. Sean las siguientes afirmaciones:

- 1. En el movimiento circular, los desplazamientos angulares finitos son magnitudes escalares.
- 2. En el movimiento rectilíneo uniformemente variado ascendente, el tiempo para alcanzar su altura

máxima es $t_{máx} = \frac{v_o}{2 g}$, donde v_o es la velocidad inicial.

- 3. La rapidez media es igual al módulo de la velocidad media.
- 4. El espacio recorrido es la longitud de la trayectoria comprendida entre las posiciones final e inicial del móvil.

Es/son correcta/s:

A) 2 y 4

B) 1 y 4

C) 1 y 3 D) 3 y 4

E) Sólo 2

53. Sean las siguientes afirmaciones:

- 1. La velocidad media es el cociente entre el desplazamiento y el intervalo de tiempo en que se produce dicho desplazamiento.
- 2. La velocidad angular es una magnitud vectorial.
- 3. La velocidad angular es el producto del radio de la circunferencia por la rapidez angular.
- 4. Si un móvil tiene los vectores aceleración y velocidad perpendiculares en todo momento, el movimiento es rectilíneo.

Es/son correcta/s:

A) 1 y 3

B) 2 v 4

C) 3 y 4

D) Sólo 2

E) 1 v 2

54. Sean las siguientes afirmaciones:

- 1. Si el movimiento es curvilíneo, el espacio recorrido siempre es menor que el módulo del desplazamiento.
- 2. El gráfico de la posición en función del tiempo, de un cuerpo con movimiento rectilíneo, tiene que ser una recta.
- 3. Dos cuerpos con movimiento circular pueden tener la misma velocidad angular pero diferente velocidad lineal.
- 4. Un cuerpo con aceleración cero puede tener velocidad distinta de cero.

Es/son correcta/s:

A) Sólo 1

B) 1 y 3

C) 3 y 4

D) Sólo 2

E) 2 y 4

55. Con relación al gráfico de x = f(t), indicado en la figura, se afirma que:

- 1. El móvil parte del origen del sistema de referencia.
- 2. El móvil parte del reposo.
- 3. En algunos tramos el móvil acelera.
- 4. En algunos tramos el móvil está en reposo.

Es/son correcta/s:

A) Sólo 2

B) 1 y 3 C) 2 y 4

D) 1 y 4

E) Sólo 3

Campus Universitario - San Lorenzo - Paraguay

Oce we

Universidad Nacional de Asunción Facultad de Ingeniería

"Tradición y Excelencia en la Formación de Ingenieros"

- 56. Con relación al gráfico de v = f(t), indicado en la figura, se afirma que:
 - 1. El móvil parte del origen y después de un cierto tiempo vuelve al origen.
 - 2. La velocidad es positiva inicialmente y luego cambia de sentido.
 - 3. El movimiento es acelerado.
 - 4. La velocidad y aceleración siempre tienen el mismo sentido.

Es/son correcta/s:

A) 1 y 2

B) Sólo 3

C) 2 y 3

D) 3 y 4

E) Sólo 4

57. Sean las siguientes afirmaciones:

- 1. Si un móvil tiene los vectores aceleración y velocidad perpendiculares en todo momento, el movimiento es rectilíneo.
- 2. Si la rapidez de un móvil es constante, el mismo no tiene aceleración.
- 3. Cuando la velocidad de un cuerpo varía, el movimiento es acelerado.
- 4. En el movimiento parabólico, en el punto de altura máxima, el módulo de la velocidad horizontal es $v_x = v_o \cos \theta$, donde v_o es la velocidad inicial y θ es el ángulo de disparo.

Es/son correcta/s:

A) 1 y 3

B) 2 y 4

C) Sólo 1

D) 1 y 2

E) 3 y 4

58. Sean las siguientes afirmaciones:

- 1. La aceleración tangencial es la responsable de la variación de la rapidez del móvil.
- 2. En un movimiento parabólico, la aceleración normal es constante en módulo pero su dirección varía
- 3. Solamente los movimientos rectilíneos variados tienen aceleración tangencial.
- 4. Un cuerpo con aceleración cero puede tener velocidad distinta de cero.

Es/son correcta/s:

A) 1 y 2

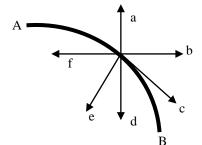
B) Sólo 2

C) Sólo 3

D) 1 y 4

E) 3 y 4

"Tradición y Excelencia en la Formación de Ingenieros"

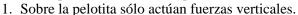

DINÁMICA

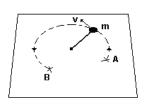
- 59. Sean las siguientes afirmaciones:
 - 1. La segunda Ley de Newton afirma que la fuerza resultante aplicada es directamente proporcional a la aceleración que adquiere.
 - 2. La expresión escalar de la Segunda Ley de Newton es $\begin{cases} \Sigma F_x = m \ a_x \\ \Sigma F_y = m \ a_y \\ \Sigma F_z = m \ a_z \end{cases}$
 - 3. La magnitud de la masa inercial representa cuantas veces mayor es la aceleración del cuerpo con respecto a la aceleración de la masa unitaria.
 - 4. En el caso de la Tierra, la masa inercial indica la fuerza con que la Tierra lo atrae.

Es/son correcta/s:

- A) 1 y 4
- B) Sólo 2
- C) Sólo 3
- D) 1 y 2
- E) 2 y 4

- 60. Sean las siguientes afirmaciones:
 - 1. El sistema de referencia inercial es un sistema que está acelerando con aceleración constante.
 - 2. La fuerza centrífuga existe en un sistema de referencia no inercial.
 - 3. La segunda Ley de Newton dice que la fuerza resultante y la velocidad tienen la misma dirección y sentido.
 - 4. La expresión vectorial de la segunda Ley de Newton es $\overrightarrow{F} = \overrightarrow{ma}$ Es/son correcta/s:
 - A) 1 y 4
- B) Sólo 2
- C) Sólo 3
- D) 2 y 4
- E) 1 y 3
- 61.Un punto material se mueve según una trayectoria curvilínea **AB**, como se muestra en la figura. Sabiendo que en todos los puntos de la trayectoria **v** ≠ **0**, las tres direcciones posibles que puede tener la fuerza resultante, son:

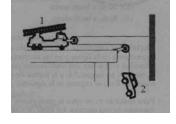

- A) a; d; e
- B)d;e;f
- C) a; b; c
- D) a; e; f
- E)c;d;e
- 62. Dos bloques A y B de masas $M_A \wedge M_B$ que descansan sobre una mesa horizontal sin rozamiento, están unidos por una cuerda ligera y flexible I, como se indica en la figura. Ambos cuerpos son estirados hacia la derecha mediante la cuerda I, aplicando una fuerza I en su extremo. Con relación a la situación planteada, se afirma que:

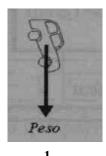

- 2. Las tensiones de las cuerdas 1 y 2 son iguales.
- 3. La tensión de la cuerda I es mayor que la tensión de la cuerda 2.
- 4. La aceleración de los bloques **A** y **B** son iguales.

Es/son correcta/s:

- A) Sólo 2
- B) Sólo 4
- C) Sólo 3
- D) Sólo 1
- E) 1 y 3
- 63.La figura muestra una pelotita atada a una cuerda que se mueve sobre una plataforma horizontal sin rozamiento. La pelotita parte del punto *A* con movimiento circular uniforme y al llegar al punto *B* la cuerda se rompe. Con relación a la situación planteada, se afirma que:

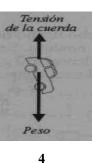
2. Después que la cuerda se rompe, la pelotita se mueve con movimiento rectilíneo acelerado.


"Tradición y Excelencia en la Formación de Ingenieros"


- 3. En el momento en que la cuerda se rompe, un observador parado sobre la plataforma observará que la trayectoria de la pelotita es rectilínea.
- 4. Mientras la pelotita está atada a la cuerda la fuerza resultante sobre la pelotita es $\vec{F} = m \vec{a}$.

Es/son correcta/s:

- A) Sólo 2
- B) 2 y 3
- C) 3 y 4
- D) Sólo 1
- E) 1 y 4


64.Un niño juega con sus carros de colección, con dos poleas y una cuerda, los coloca como se muestra en la figura y se da cuenta que el carro 2 cae con una aceleración constante. De los siguientes diagramas de las fuerzas que actúan sobre el carro 2, el más adecuado es el mostrado en:

Es/son correcta/s:

- A) Sólo 1
- B) Sólo 3
- C) Sólo 2
- D) 1 y 4
- E) Sólo 4
- 65. Un auto viaja a lo largo de un camino montañoso con rapidez constante *v*. Asumiendo que el perfil de las partes altas y bajas de este camino corresponden a arcos de circunferencias de radio *R*, el conductor ejerce menor fuerza contra su asiento:
 - 1. En las cimas de la montaña cuando *v menor raíz gR*.
 - 2. En las cimas de la montaña cuando *v igual raíz gR* .
 - 3. En las partes más bajas de la montaña cuando v menor raíz gR.
 - 4. En las partes más bajas de la montaña cuando *v igual raíz gR*.

Es/son correcta/s:

- A) 1 y 2
- B) Sólo 3
- C) Sólo 2
- D) Sólo 4
- E) Sólo 1
- 66.Dos péndulos iguales oscilan libremente. En cierto instante el péndulo *1* se encuentra en el punto más alto de su trayectoria y el péndulo *2* en el punto más bajo de la suya. Con relación a la situación planteada, se afirma que:
 - 1. La velocidad del péndulo 1 es mayor que la del péndulo 2.
 - 2. La aceleración del péndulo 1 es mayor que la del péndulo 2.
 - 3. La velocidad del péndulo 1 es menor que la del péndulo 2.
 - 4. La aceleración del péndulo 1 es menor que la del péndulo 2.

Es/son correcta/s:

- A) 1 y 2
- B) 1 y 4
- C) 3 y 4
- D) Sólo 4
- E) 2 y 3
- 67. Con relación al tema anterior, las ecuaciones resultantes de la aplicación de la segunda Ley de Newton, son: (adoptar +x hacia la derecha; +y hacia arriba)
 - 1. $\Sigma F_x = F_r = ma$; $\Sigma F_y = N mg = 0$ (SRI)
 - 2. $\Sigma F_x = F_r = Ma$; $\Sigma F_y = N mg = 0$ (SRI)
 - 3. $\Sigma F_x = F_r ma = 0$; $\Sigma F_y = N mg = 0$ (SRNI)
 - 4. $\Sigma F_x = F_r Ma = 0$; $\Sigma F_v = N mg = 0$ (SRNI)

Es/son correcta/s:

- A) 1 y 3
- B) 2 y 3
- C) Sólo 4
- D) 2 v 4
- E) 1 v 4

Universidad Nacional de Asunción Facultad de Ingeniería "Tradición y Excelencia en la Formación de Ingenieros"

RESPUESTAS DEL EJERCITARIO TEÓRICO

	0	1	2	3	4	5	6	7	8	9
0		C	В	C	C	В	В	A	A	A
1	A	D	A	В	C	В	A	E	C	В
2	A	D	D	A	С	A	В	E	A	C
3	E	C	D	A	В	E	E	C	В	В
4	A	C	A	E	E	В	В	C	E	В
5	C	В	В	E	C	D	C	E	D	D
6	D	В	D	C	E	C	E	A		
7										

"Tradición y Excelencia en la Formación de Ingenieros"

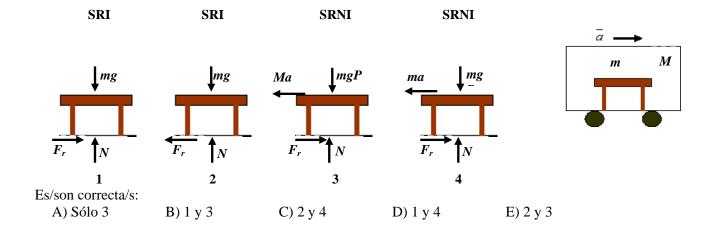
EJERCICOS EXCLUIDOS

68. En la expresión $\frac{HP}{Hz}$, el factor de conversión al **SI**, es:

- 1. 735
- 2. 746
- 3. 7350
- 4. 7460

Es/son correcta/s:

- A) Sólo 4
- B) Sólo 1
- C) Sólo 3
- D) 2 y 3
- E) Sólo 2


69. Con respecto al movimiento circular uniforme, se afirma que:

- 1. La velocidad angular del móvil en función del tiempo es $\omega = \omega_0 + \alpha t$
- 2. La frecuencia es el número de vueltas que da el móvil en la unidad de tiempo.
- 3. El espacio recorrido por el móvil en la mitad del periodo es el diámetro de la circunferencia.
- 4. La rapidez angular del móvil permanece constante.

Es/son correcta/s:

- A) Sólo 4
- B) 1 y 2
- C) 1 y 3
- D) Sólo 3
- E) 2 y 4

70. Una mesa de masa *m* se encuentra dentro de un carro de masa *M* que se mueve con aceleración horizontal, como se muestra en la figura. Los diagramas del cuerpo libre indicados para la mesa, para un sistema de referencia inercial (**SRI**) y para un sistema de referencia no inercial (**SRNI**), son:

