
 

 

Abstract   This paper presents a new approach using a 
variant of the Strength Pareto Evolutionary Algorithm (SPEA) to 
address reactive power compensation in electric systems as a 
multi-objective problem, turning most traditional constraints into 
new objective functions. 

The method independently optimizes several figures related 
with the operation of a Power System such as, amount of 
investment in reactive power devices, transmission losses and, as 
an addition to previous approaches, voltage security is included. 
At the same time, constrains limit other parameters as reliability 
and voltage profile. 

That way, a wide set of optimal solutions, known as Pareto set, 
is found before deciding which solution best combines different 
features. 

A set of compensation schemes elaborated by specialists using 
traditional engineering tools is compared to a Pareto set found 
with the proposed approach using appropriate test suite metrics. 
Comparison results emphasize outstanding advantages of the 
proposed computational approach, such as: ease of calculation, 
better-defined Pareto front and a larger number of Pareto 
solutions. 
 

Index Terms   Reactive power compensation, voltage security, 
multi-objective optimization, evolutionary algorithms. 

I. INTRODUCTION 
EACTIVE power compensation is commonly addressed as a 
constrained single-objective optimization problem [1-3]. 

Traditionally, it basically consists in determining an adequate 
location and size of shunt and/or series capacitor and reactor 
banks. In this context, the objective function is a linear 
combination of several factors, such as: investment in reactive 
power devices, transmission losses and voltage security [4]. 
Traditional single-objective optimization algorithms usually 
provide a unique optimal solution. On the contrary, Multi-
objective Optimization Evolutionary Algorithms (MOEA) 
independently and simultaneously optimize several parameters 
turning most traditional constraints into new objective 
functions. This seems more natural for real world problems 
where choosing a threshold may seem arbitrary [5]. As a 
result, a wide set of optimal solutions (Pareto set) may be 
found. Therefore, an engineer may have a whole set of optimal 
alternatives before deciding which solution is the best 
compromise of different (and sometimes contradictory) 
features.   

In the literature, there can be found several papers that 
address the reactive power compensation as a Multi-objective 
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problem, [6,7], yet most of them consider a linear combination 
of objectives, thus leading to special cases of optimal power 
flow.  

This paper presents the reactive power compensation 
problem as a multi-objective problem, where several objective 
functions are optimized independently. The objective functions 
selected comprise the following aspects of the problem: 

 
•  Investment in compensation devices, such as shunt 

capacitor banks. This item has both economic and 
technical importance, since an overcompensated power 
system can lead to undesired over voltages and 
oscillations [4] 

•  Active power losses, which is another key economic 
aspect in an efficient operation of a power system. 

•  Voltage security, in order to avoid operation points that 
could lead to unstable behavior of the system. 

 
To solve the reactive power compensation problem as 

exposed, this paper presents a new approach based on a 
modified Strength Pareto Evolutionary Algorithm (SPEA) [8, 
9, 10], which is a MOEA with an external population of Pareto 
Optimal solutions that best conform a Pareto Front, provided 
by a clustering process that saves the most representative 
solutions. In this paper, a new important objective has been 
included, regarding the voltage security of the power system. 

II. MATHEMATICAL FORMULATION 
For the purposes of this paper, the following assumptions 

where considered in the formulation of the problem: 
•  only shunt capacitor/reactor banks were considered as 

reactive power sources,  
•  shunt-capacitor/reactor bank cost per MVAr is the same 

for all busbars of the power system;  
•  power system is considered only at peak load. 

Based on these considerations and the previous mentioned 
in the introduction, tree objective functions Fi (to be 
optimized) have been identified [4, 9, 11]: F1 and F2 are 
related to investment and transmission losses respectively, 
while F5  function is related with the voltage security of the 
system. Each one of the functions is formulated in what 
follows: 
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F1: Investment in reactive compensation devices 
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s.t.: F1 ≤ F1m ; 
 

where: F1 is the total required investment; F1m is the 
maximum amount available for investment; Bi is the 
compensation at busbar i measured in MVAr; Bm is the 
absolute value of the maximum amount of compensation in 
MVAr allowed at a single busbar of the system; α is the cost 
per MVAr of a capacitor bank; β is the cost per MVAr of a 
reactor bank and n is the number of busbars in the electric 
power system. 

 
F2: Active power losses 

 
02 ≥−= lg PPF         (2) 

 
Where: F2 is the total transmission active losses of the 

power system in MW; Pg is the total active power generated in 
MW and Pl  is the total load of the system in MW. 

 
F3: Voltage security 
 

∗= λ3F             (3) 
 
where ∗λ  is a loading factor associated to a critical (unstable) 
point [12, 13], i.e. a point where the Jacobian of the system 
becomes singular. This magnitude is calculated using the 
Continuation Method [14, 15], assuming a proportional load 
increment through all busbars of the network. Thus, in order to 
obtain a reasonable stability margin, this parameter has to be 
maximized. 

In summary, the optimization problem to be solved is the 
following: 

 
[ ]321optimize FFF=F     (4) 
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is known as objective vector, subject to mFF 11 ≤ and a set 
of nonlinear power flow equations [6]: 

 
( )λρ,,0 xH=          (5) 

 
where NDx ℜ∈  is the set of dependent variables of the 

system, while NIℜ∈ρ  is the set of independent variables. 

λ  is the loading factor associated to the operating point, 
referred to a “base” load power level. 

To represent the amount of reactive compensation to be 
allocated at each busbar i, an unknown vector B, known as 
decision vector [8], is used to indicate the size of each reactive 
bank in the power system, i.e.: 
 

[ ] miin BBBBBB ≤ℜ∈= , , 21 �B    (6) 

 
 A basic example of this representation is illustrated in 
Figure 1, applied to a 6-busbar example. 

Busbar 1

Busbar 2

3 MVAr

2 MVAr

1 MVAr

Busbar 3

Busbar 4

Busbar 5

Busbar 6

B = [0 3 0 0 2 1]

 
 
 

The set of solutions of a multi-objective optimization 
problem consists of all decision vectors B for which the 
corresponding objective vectors F cannot be improved in any 
dimension without degradation in another. This set of decision 
vectors is known as Pareto Optimal, represented as P. The 
corresponding set of objective vectors F calculated using 
equations (1) to (3) conform a set known as Optimal Pareto 
Front, denoted PF [8]. 

Because the true Pareto Optimal Set (termed True), with its 
corresponding PFtrue, are not completely known in practice 
without extensive calculation (computationally not feasible in 
most situations), it would be normally enough for practical 
purposes to find a known Pareto Optimal Set, termed Pknown, 
with its corresponding Pareto Front PFknown, close enough to 
the true optimal solution [5]. 

III. PROPOSED METHOD 
A new approach based on the Strength Pareto Evolutionary 

Algorithm was developed for this work. This method, closely 
related to Genetic Algorithms [16], is based on generating a 
stored External Population composed by the best-known 
individuals B of a general evolutionary population. This 
external group of solutions conforms Pknown, available at each 
moment of the computation, i.e., the best-known 
approximation to Ptrue. The original SPEA evaluates an 
individual’s fitness depending on the number of decision 
vectors it dominates in an evolutionary population, i.e., 
decision vectors that are not better in any objective function Fi, 
but with a worse objective function Fi for at least one value of 
i.  

Fig. 1. Example of a decision vector 



 

SPEA preserves population diversity using Pareto 
dominance relationship and incorporating a clustering 
procedure in order to reduce the nondominated set without 
destroying its characteristics. In general, cluster analysis 
partitions a collection of m elements into g groups of relatively 
homogeneous elements, where g < m, selecting a 
representative individual for each of the g clusters. That way, a 
fixed number of g individuals may be maintained in the 
external population preserving the main characteristics of the 
Pareto Front [8]. 

An important issue with SPEA is its convergence property, 
assured by Theorem 4 proved in [5], a characteristic not 
always present in other MOEAs. Consequently, the algorithm 
implemented for this work is based on the original SPEA [8], 
but differs from it in the following aspects: 

 
•  Heuristic Initialization. A special heuristic method is used 

to generate the initial population in order to obtain 
individuals electrically well compensated. The proposed 
heuristic is based on encouraging compensation at busbars 
with large number of branches and voltage profile far from 
the desired value. This is done by using a method 
summarized as follows: 
a. Choose a total amount of compensation Btot. 
b. For each busbar i of the system, calculate a factor Ki 

using the following expression: 
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where il is the number of branches connected to node i. 
Ki = 0 indicates that no reactive compensation is 
heuristically assigned to busbar i. 

c. Normalize Ki using: 
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d. Compensate each busbar i with Bi calculated as follows: 

totii BKB ′=          (8) 

•  Local Optimization. A special heuristic technique is 
implemented to improve individuals based on determining 
an adequate search direction using the power flow 
mismatch expression [4]: 
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From (9) and neglecting 3J  as well as the non-diagonal 
elements of { }

ij
J 44 =J , the following expression is derived: 
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where iQ∆ is the amount of reactive compensation to be 
added at busbar i.  

 

•  Stop criterion. Computation is halted when no new 
nondominated solution is found to dominate an individual 
of the external population for a given number Nstop of 
successive generations. 

 
•  Two External Populations. If only one external population 

is used, it is possible:  
 

a. to save all found Pareto solutions, but this population 
may become too large and the evolutionary population 
looses genetic importance in the search process; or 

 

b. to loose found solutions using clustering to maintain a 
given number g of external solutions (original SPEA 
approach). 

 

In this proposal, two external populations are stored, one 
with all found nondominated solutions and another with a 
maximum number g of nondominated individuals, fixed by 
clustering, that participates in the ordinary evolutionary 
process. That way, the external population used in the 
evolutionary process does not diminish the influence of the 
evolutionary population and no optimal solution is lost. 
Note that this second external population may be stored on 
disk, because it does not participate in the evolutionary 
process. 

 
•  Freezing. Inspired in Simulated Annealing technique, 

probabilities (of mutation Pm, crossover Pc and for using 
the local optimization Plo) change with the number of 
generations and fitness value, freezing at the end of the 
computation to improve convergence [17].  

 
The proposed method may be summarized as follows: 
 

1. Generate an initial population Pop using the heuristic 
method previously exposed and create two empty 
external nondominated sets Pknown and SPknown (stored 
external population). 

2. Copy nondominated members of Pop to Pknown and 
SPknown. 

3. Remove individuals within SPknown, which are covered 
(dominated) by any member of SPknown. 

4. Remove solutions within Pknown, which are covered by 
any member of SPknown. 

5. If the number of externally nondominated solutions in 
Pknown exceeds a given maximum g, clustering is applied 
in order to reduce the external population to a size g. 

6. Calculate the fitness of each individual in Pop as well as 
in Pknown using standard SPEA fitness assignment 
procedure. 

7. Select individual from Pop + Pknown (multiset union) until 
the mating pool is filled. In this study, roulette wheel 
selection is used. 

8. Apply Plo, Pc and Pm to determine whether and individual 
is locally optimized or selected for crossover and 
mutation, in which case, standard genetic operators are 



 

applied. 
9. Go to step 2 if stop criterion is not verified. 
 
Figure 2 shows a flow diagram of the procedure. 
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IV. EXPERIMENTAL ENVIRONMENT 
As a study case, the IEEE 118 Test Case has been selected 

[18] Figure 3 shows a layout of the network case. In order to 
stress the original system, its active and reactive loads were 
incremented by 40%, turning the power network in an 
adequate candidate for reactive power compensation.  

For comparison purposes, the Pareto set generated by the 
proposed method has been compared to a Pareto set of 
compensation schemes elaborated by a team of specialized 
engineers using standard computational programs (Specialist).  

For the experimental results presented in the following 
section, it has been assumed that βα = , i.e., capacitor and 
reactor banks have the same cost per MVAr. At the same time, 
Nstop = 100 was experimentally chosen. 

To evaluate the experimental results of the two methods, an 
appropriate test suite metrics is used [5], because no single 
metric can entirely capture total MOEA performance, 
effectiveness and efficiency. The test suit comprises the 
following metrics: 
 

1) Overall Nondominated Vector Generation (N) 

cknownPFN
∆
=         (11) 

where 
c

⋅ denotes cardinality. 

This metric indicates the number of solutions in PFknown. A 
good PFknown set is expected to have a large number of 
nondominated individuals, in order to offer a wide variety 
of options for the engineer. 
 

2) Overall Nondominated Vector Generation Ratio 
(ONVGR) 

ctruePF
NONVGR

∆
=       (12) 

It denotes the ratio between the solution's number in 
PFknown to the number of solutions in PFtrue. Since the 
objective is to obtain a PFknown set as similar as possible to 
PFtrue, a value near to 1 is desired. 
 

 

 
3) Error Ratio (ER) 
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This ratio reports the proportion of objective vectors in 
PFknown that are not members of PFtrue. Therefore, an Error 
Ratio ER close to 1 indicates a poor correspondence 
between PFknown and PFtrue, i.e., E = 0 is desired. 

Fig. 2. Proposed Method 

Fig. 3. IEEE 118 Busbar Test Case 



 

 Since these metrics reflect the likeness between the true 
Pareto Front Optimal set PFtrue and a computed Pareto Front 
set PFknown, a good approximation of PFtrue is built by 
gathering all nondominated individuals from the sets. In other 
words, for the following results, PFtrue is approximated by the 
best-known solutions of all the experiments. 

V. EXPERIMENTAL RESULTS 
Table I presents experimental results using the IEEE-118 

study case, showing the figures obtained by the two methods. 
The proposed method has been stopped using a maximum 
number of generation criterion, since it continues generating 
new solutions reaching more than 3000 stored solutions 
(SPknown). This is an important advantage since it gives the user 
a wider variety of alternative solutions.  

 
TABLE I 

EXPERIMENTAL RESULTS: 100-GENERATION RUN OF THE PROPOSED 
METHOD 

Metrics Specialist Proposed 
Method 

N 170 2132 

ONVGR 0.0993 1.2473 

ER 0.6294 0.2265 
 
For N and ONVGR metrics, it is clear that the proposed 

method has the best performance, since it generates the widest 
variety of solutions. Values obtained for ER metric show that 
the proposed approach generates a set of solutions that yields 
closer to  PFtrue  than the set suggested by the specialists team. 

 A set of solutions generated by the proposed method is 
shown in Figure 4 as a graphical example. Each axis represents 
one objective, and each point in the surface grid is a solution 
of the problem. 

 
 
Figure 5 shows the solutions obtained by each method when 

compared using 1st and 2nd objectives. It can be seen that the 
proposed method is much more efficient when it is necessary 
to identify solutions that reduce the transmission losses, since 
the specialist solutions tend to higher levels of losses. 

 

 
 

 Figure 6 depicts the behavior of both methods when the 2nd 
and 3rd objectives are evaluated. The proposed method 
generates solutions that are mostly concentrated in the area 
with low levels of transmission losses and good stability 
margin, while the specialist method indicates solutions that are 
more randomly distributed. 

 

 
 

VI. CONCLUDING REMARKS 
In this paper, Reactive Compensation Problem is treated as 

a Multi-objective Optimization Problem with 3 conflicting 
objective functions: (i) investment in reactive compensation 
devices, (ii) active power losses, and (iii) voltage security. 

To solve the problem, an approach based on SPEA is 
proposed. This approach introduces several proposals as: (i) 
heuristic initialization, (ii) a local optimization technique, (iii) 
a stop criterion, (iv) two external populations and (v) a 
freezing feature. 

For comparison purposes, the solution set obtained in a 
single run of the proposed method is compared with the best 
set of solutions calculated by a team of specialists. 

Fig. 5. Investment (MW) vs. transmission losses (MW) 

x = proposed method              O = specialist 

x = proposed method              O = specialist 

Fig. 6. Stability margin vs. transmission losses (MW) 

Fig. 4. Set of solutions generated by the proposed method 

 λ* 

Trans. losses 
Investment 



 

Experimental results using the proposed approach 
demonstrated several advantages when using the proposed 
method, such as a set of solutions closer to the True Pareto Set 
outperforming the other set in every studied figure of merits, 
and a wider variety of options. This last feature is of special 
importance, since a richer set of alternatives are offered to the 
network planners. In order to select sub-sets of solutions which 
best fit the interests of the user, an adaptive constrain 
philosophy is suggested. That way, the network engineer may 
restrict the constraints to reduce the number of solutions after 
having a good idea of the whole Pareto solutions, searching 
forward only in the redefined domain. This process may 
continue iteratively until a good solution with an acceptable 
compromise among objective functions is found. 

As future work, new specialized genetic operators are being 
developed to locally improve reactive compensation of a given 
individual. At the same time, other objective functions and 
constraints (such as nonlinear costs of compensation devices) 
are going to be considered. Finally, parallel asynchronous 
computation using a network of computers are considered for 
larger networks with more objective functions. 
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