
Abstract  This paper presents a new approach to treat
Reactive Power Compensation in Power Systems using a Multi-
objective Optimization Evolutionary Algorithm. A variant of the
Strength Pareto Evolutionary Algorithm is proposed to
independently optimize several parameters instead of traditional
constrained Single-objective approach where an objective
function is a linear combination of several factors, such as,
investment and transmission losses, with several constrains that
limit other parameters as reliability and voltage profile.

With the proposed approach, a set of optimal solutions known
as Pareto set is found before deciding which solution best
combines different features. This set is compared with a set of
compensation schemes elaborated by a team of specialized
engineers, using appropriate test suit metrics.

Comparison results emphasize outstanding advantages of the
proposed computational approach, such as: ease of calculation,
better defined Pareto Front and a larger number of Pareto
solutions.

Index Terms  Reactive Power Compensation, Multi-
objective Optimization, Evolutionary Algorithms.

I. INTRODUCTION

EACTIVE Power Compensation is commonly addressed as
a constrained Single-objective Optimization Problem

(SOP) [1-3]. With this approach, an adequate location and
size of shunt capacitor banks are found. Traditionally, the
objective function is a linear combination of several factors,
such as investment and transmission losses, subject to
operational constrains as reliability and voltage profile [4].
Single-objective Optimization Algorithms usually provide a
unique optimal solution. On the contrary, Multi-objective
Optimization Evolutionary Algorithms (MOEA)
independently and simultaneously optimize several
parameters turning most traditional constraints into new
objective functions. This seems more natural for real world
problems where choosing a threshold may seem arbitrary [5].
As a result, a wide set of optimal solutions (known as Pareto
set) may be found. Therefore, an engineer may have a whole
set of optimal alternatives before deciding which solution is
the best compromise of different (and sometimes
contradictory) features.

To solve the Reactive Power Compensation Problem, this
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paper presents a new approach based on the Strength Pareto
Evolutionary Algorithm (SPEA) [7]. This is a MOEA with an
external population of Pareto Optimal solutions that best
conforms a Pareto Front, provided by a clustering process that
saves the most representative solutions [8].

II. MULTI-OBJECTIVE OPTIMIZATION PROBLEMS

A general Multi-objective Optimization Problem (MOP)
[9] includes a set of n decision variables, a set of k objective
functions, and a set of m restrictions. Objective functions and
restrictions are functions of decision variables. This can be
expressed as:
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x is known as decision vector and y as objective vector. X
denotes the decision space and the objective space is denoted
by Y. Depending on the problem at hand “optimize” could
mean minimize or maximize.

The set of restrictions e(x) ≥ 0 determines the set of
feasible solutions Xf and its corresponding set of feasible
objective vectors Yf.

From this definition, it follows that every solution consists
of a n-tuple x, that yields an objective vector y, where every x
must satisfy the set of restrictions e(x) ≥ 0. The optimization
problem consists in finding the x that has the “best” F(x). In
general, there is not one “best” solution, but a set of solutions,
none of which can be considered better than the others if all
objectives are considered at the same time. This derives from
the fact that there could be (and mostly there are) conflicts
between the different objectives that compose a problem.
Thus, a new concept of optimality should be established for
MOPs.

In common SOPs the set of feasible decision variables is
completely ordered by the objective function F. The goal is
simply to find the value (or set of values) that lead to the
optimal values of F. In contrast, in multi-objective
optimization the feasible decision vector set is only partially
ordered; i.e., there exist a decision vector x1 and a decision
vector x2 and F(x1) cannot be considered better than F(x2),
neither F(x2) is better than F(x1). Then, mathematically the
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relations =, ≤ and ≥ should be extended. This could be done
using the concept of dominance as explained below. In fact,
given two decision vectors u, v ∈X in a context of
minimization, we can state:

F(u) = F(v)      iff        Fi(u) = Fi(v)         ∈∀i {1, 2, ... , k}
F(u) ��F(v)    iff        Fi(u) ��Fi(v)         ∈∀i {1, 2, ... , k}
F(u) < F(v)     iff F(u) ��F(v)   ∧ F(u)  ≠ F(v);

(2)

where ∧ denotes an and operation.

The relations � and > could be defined in similar ways.
Then, given two decision vectors of a MOP, x1 and x2 they
comply to one of three possible conditions:

• either F(x1) < F(x2),
• or F(x2) < F(x1),
• or F(x1) % F(x2) ∧ F(x2) % F(x1).

The above relations may be expressed with the following
symbols:

Pareto Dominance. Given two objective vectors a, b∈X

a 0 b (a dominates b) iff a < b
b 0 a (b dominates a) iff b < a
a ó b (a and b are not comparable)         iff a % b ∧ b % a

(3)

Definitions for the maximization and
maximization/minimization problems could be formulated in
a similar way.

At this point the concept of Pareto optimality can be
introduced. A solution is said to be Pareto optimal or “non
inferior” if any objective can not be improved without
degrading others.

Pareto Optimality. A decision vector x ∈ Xf and its
corresponding objective vector y = F(x) ∈ Yf is non-
dominated with respect to a set A ⊆ Xf if and only if

∀ a ∈ A : (x 0 a ∨  x ó a) (4)

where ∨ denotes an or operation.

When x is non-dominated with respect to the whole set Xf

(and only in this case) x is a Pareto optimal solution. The
whole set of Pareto optimal solutions is known as Pareto
optimal set P; i.e.

P = { x ∈ Xf |  x 0 v ∨  x ó v ∀ v ∈ Xf } (5)

The corresponding set of objective vectors y is known as
Pareto optimal front FP; i.e.,

FP = { y ∈ Yf | y = F(x)        ∀ x ∈ P } (6)

Dealing with Pareto optimal solutions, it is clear that they
are non-comparable. This points to the fact that a MOP does

not always have a single solution, but a set of compromise
solutions. None of these solutions can be defined as “the
best”, unless other information is added (as a weight for every
objective).

III. MATHEMATICAL FORMULATION

For the purposes of this paper, the following assumptions
where considered in the formulation of the problem:

• shunt-capacitor bank cost per MVAr is the same for all
busbars of the power system;

• power system is considered only at peak load.

Based on these considerations [4, 10], four objective
functions Fi (to be minimized) have been identified for the
present work: F1 and F2 are related to investment and
transmission losses, while F3 and F4 are related to quality of
service. The objective functions to be considered are:

F1: Investment in reactive compensation devices
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where: F1 is the total required investment; F1m is the
maximum amount available for investment; Bi is the
compensation at busbar i measured in MVAr; Bm is the
absolute value of the maximum amount of compensation in
MVAr allowed at a single busbar of the system; α is the cost
per MVAr of a capacitor bank and n is the number of busbars
in the electric power system.

F2: Active power losses

02 ≥−= lg PPF (8)

where: F2 is the total transmission active losses of the power
system in MW; Pg is the total active power generated in MW
and Pl is the total load of the system in MW.

F3: Average voltage deviation
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where: F3 is the per unit (pu) average voltage difference; Vi is
the actual voltage at busbar i (pu) and Vi* is the desired
voltage at busbar i (pu).

F4: Maximum voltage deviation

0max *
4 ≥−=−=

∞

∗VVii
i

VVF (10)



where F4 is the maximum voltage deviation from the desired

value (pu); nℜ∈V is the voltage vector (unknown) and
nℜ∈∗V is the desired voltage vector.

In summary, the optimization problem to be solved is the
following:
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equations [9]:
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where: Vk is the voltage magnitude at node k; Yki is the
admitance matrix entry corresponding to nodes k and i; δk is
the voltage phase angle at node k; θki is the phase admitance
matrix entry corresponding to nodes k and i; Pk is the active
power injected at node k; Qk is the reactive power injected at
node k.

To represent the amount of reactive compensation to be
allocated at each busbar i, a decision vector B [7], is used to
indicate the size of each reactive bank in the power system,
i.e.:

[ ] miin BBBBBB ≤ℜ∈= ,,21 �B (13)

Note that the true Pareto Optimal Set (termed Ptrue), with
its corresponding PFtrue, are not completely known in practice
without extensive calculation (computationally not feasible in
most situations). Therefore, it would be normally enough for
practical purposes to find a known Pareto Optimal Set, termed
Pknown, with its corresponding Pareto Front PFknown, close
enough to the true optimal solution [5].

IV. PROPOSED APPROACH

A new approach based on the Strength Pareto Evolutionary
Algorithm was developed for this work. This method, closely
related to Genetic Algorithms [12] generates a stored
External Population composed by the best known individuals

B of a general evolutionary population. This external group of
solutions conforms Pknown, available at each moment of the
computation, i.e., the best known approximation to Ptrue. The
original SPEA evaluates an individual’s fitness depending on
the number of decision vectors it dominates in an ordinary
evolutionary population.

SPEA preserves population diversity using Pareto
dominance relationship and incorporating a clustering
procedure in order to reduce the nondominated set without
destroying its characteristics. In general, cluster analysis
partitions a collection of r elements into g groups of relatively
homogeneous elements, where g < r, selecting a
representative individual for each of the g clusters [8]. That
way, a limited number (up to g individuals) may be
maintained in the external population, preserving the main
characteristics of the Pareto Front [7].

An important issue with SPEA is its convergence property,
assured by Theorem 4 proved in [5], a characteristic not
always present in other MOEAs. Consequently, the algorithm
implemented for this work is based on the original SPEA [7],
but differs from it in the following aspects:

• Scaling. A special heuristic method is used to improve the
fitness calculation in order to discourage individuals
electrically not well compensated in strategic busbars. The
proposed heuristic privileges busbars with large number of
branches and good voltage profile. This is accomplish
with the following scaling method:

a. For each busbar i of a scheme (individual of a
population), calculate a (penalization) factor Ki using
the following expression:
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where 
il is the number of branches connected to node i.

Ki = 0 indicates that no reactive compensation is
heuristically recommended for busbar i.

b. Evaluate a penalization scaling constant K for each
scheme using:
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• Stop criterion. Computation is halted after a maximum
number of generations or when no new nondominated
solution is found to dominate an individual of the external
population for a given number Nstop of successive
generations.

The proposed approach may be summarized as follows:

1. Generate an initial population Pop and create an empty
external nondominated set Pknown.

2. Copy nondominated members of Pop to Pknown..

3. Remove individuals within Pknown which are covered
(dominated) by any member of Pknown.

4. If the number of externally nondominated solutions in
Pknown exceeds a given maximum g, clustering is applied
in order to reduce the external population to a size g.

5. Calculate the fitness of each individual in Pop as well as
in Pknown using scaled SPEA fitness assignment
procedure.

6. Select individual from Pop + Pknown (multiset union)
until the mating pool is filled. For this study, roulette
wheel selection was used.

7. Apply crossover and mutation standard genetic
operators.

8. Go to step 2 if stop criterion is not verified.

V. EXPERIMENTAL ENVIRONMENT

As a study case, the IEEE 118 Bus Power Flow Test Case
has been selected [13]. In order to stress the original system,
its active and reactive loads were incremented by 40%,
turning the power network in an adequate candidate for
reactive power compensation.

For comparison purposes, the Pareto set generated by the
proposed approach has been compared to a Pareto set
obtained by a team of specialized engineers using standard
computational programs that are here called heuristic
method.

For the experimental results presented in the following
section, it has been assumed for simplicity that 1=α , i.e.,
capacitor banks have unitary cost per MVAr. At the same
time, Nstop = 100 was experimentally chosen.

To be able to compare two different sets of solutions, an
appropriate test suite metrics is used [5], because no single
metric can entirely capture total MOEA performance,
effectiveness and efficiency. The test suit comprises the
following metrics:

1) Overall Nondominated Vector Generation (N)

cknownPFN
∆

=
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c
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This metric indicates the number of solutions in PFknown.
A good PFknown set is expected to have a large number of
individuals, in order to offer a wide variety of options to
designers.

2) Overall Nondominated Vector Generation Ratio
(ONVGR)
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It denotes the ratio between the number of solutions in
PFknown to the number of solutions in PFtrue. Since the
objective is to obtain a PFknown set as similar as possible to
PFtrue, a value near to 1 is desired.

3) Error Ratio (E)
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This ratio reports the proportion of objective vectors in
PFknown that are not members of PFtrue. Therefore, an Error
Ratio E close to 1 indicates a poor correspondence
between PFknown and PFtrue, i.e., E = 0 is desired.

4) Maximum Pareto Front Error (ME)
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It indicates the maximum error band that, when
considered with respect to PFknown, encompasses every
vector in PFtrue. Ideally, ME = 0 is desired.

5) Generational Distance (G)
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where id is the Euclidean distance (in objective space)

between each objective vector F in PFknown and its nearest
member in PFtrue. A large value of G indicates PFknown is
far from PFtrue, being G = 0 the ideal situation.



Since most of these metrics reflect the likeness between the
true Pareto Front Optimal set PFtrue and a computed Pareto
Front set PFknown, a good approximation of PFtrue is built from
a complete set of solutions extensively calculated during
several months.

VI. EXPERIMENTAL RESULTS

For experimental purposes, a classical implementation of
the SPEA MOEA was first tested, but it soon reached a
stagnant population; i.e., no new solutions were obtained with
new generations for Nstop = 100 generations, satisfying the
stop criterion. On the other hand, the proposed approach
stopped using a maximum number of generation criterion,
since it continues generating new solutions, not showing the
premature convergence seen in our SPEA implementation.
This is an important advantage of the new approach since it
gives the user a wider variety of alternative solutions;
therefore, only the proposed approach will be compared to the
specialists’ results. Consequently, the following tables
presents experimental results using the IEEE-118 study case,
comparing the solutions obtained with a typical run of the
proposed approach with respect to the best solutions obtained
by a team of highly specialized engineers using traditional
computing tools.

Table I shows solutions obtained with the proposed
approach while Table II does the same for the solution set
generated by the specialists (heuristic method). Both tables
present in the first column an ID for identification of each
individual in the final Pareto set. Columns 2 to 5 contain the
objective values obtained for each individual. The last column
tells whether the individual is dominated or not by any
solution in the other set.

TABLE I
PROPOSED APPROACH: PERFORMANCE OF SOLUTIONS

# F1 F2 F3 F4
Dominated

by
SP1 133.14 472 0.0492 0.0096
SP2 133.35 454 0.0494 0.0099
SP3 133.52 498 0.0488 0.0101 H1

SP4 132.59 497 0.0485 0.0101
SP5 132.47 486 0.0485 0.0102
SP6 132.55 484 0.0499 0.0105
SP7 132.78 473 0.0465 0.0111
SP8 133.48 360 0.0496 0.0111
SP9 132.78 294 0.0490 0.0116
SP10 134.66 424 0.0493 0.0117 H4

SP11 132.80 424 0.0500 0.0117

� � � � �

SP265 132.82 459 0.0458 0.0117

TABLE II
HEURISTIC METHOD: PERFORMANCE OF SOLUTIONS

# F1 F2 F3 F4
Dominated

by
H1 133.07 497 0.0476 0.0098
H2 133.08 495 0.0503 0.0098
H3 133.14 472 0.0507 0.0101 SP1

H4 134.58 406 0.0486 0.0110
H5 132.72 499 0.0510 0.0115 SP6

H6 132.75 491 0.0513 0.0116 SP4

H7 132.78 487 0.0515 0.0116 SP7

H8 132.79 481 0.0515 0.0116 SP9

H9 132.86 473 0.0517 0.0117 SP11

H10 132.91 466 0.0518 0.0118 SP11

H11 132.93 463 0.0518 0.0119 SP265

� � � � �

H170 135.00 162 0.0522 0.0131

As shown in the last columns of tables I and II, there are
more individuals calculated by the proposed approach that
dominate solutions given by the specialists than the other way
around. Clearly, the proposed method overcome the heuristic
one in the quality of the solutions. Additionally, the proposed
method has the advantage of presenting a wider variety of
options (265 solutions) with fewer highly specialize
engineers.

Table III shows the experimental results of a comparison
based on the test suite metrics presented in section V. As
previously remarked, the proposed metrics try to measure the
similarity between the solutions set and the True Pareto set in
objective space. From the experimental results, it can be
confirmed that the proposed approach offers better solutions
than the ones proposed by the experts, as clearly indicated by
the first four metrics, and noting that the relative difference in
Generational Distance metric (G) is relatively small (less
than 3.2 %). In fact, the proposed approach presents a larger
set of solutions (N = 265 vs. 232) that are mostly true
solutions (ONVGR of 86,6 % vs. 75.8 % for the heuristic
method) and with smaller error (E = 0.076 and ME = 0.048).

TABLE III
RESULTS USING COMPARISON METRICS

Metric Proposed
approach

Heuristic
method

Relative
difference

100*(prop. - heu.)
prop.

Best
method

N 265 232 12.453  % Proposed
ONVGR 0.866 0.758 12.471  % Proposed

E 0.076 0.302 -299.603 % Proposed
ME 0.048 0.078 -62.343  % Proposed
G 0.609 0.590 3.118  % Heuristic



VII. CONCLUDING REMARKS

In this paper, Reactive Compensation Problem is first
treated as a Multi-objective Optimization Problem with 4
conflicting objective functions: (i) investment in reactive
compensation devices, (ii) active power losses, (iii) average
voltage deviation and (iv) maximum voltage deviation.

To solve the problem, a new approach based on SPEA is
proposed. This new approach introduces new features such
as: (i) a fitness scaling technique and (ii) a stop criterion.

For comparison purposes, the solution set obtained in a
single run of the proposed approach is compared to a set of
heuristic schemes elaborated by a team of specialists.

Experimental results using the proposed approach
demonstrated several advantages when using the proposed
method, such as: (i) a set of solutions closer to the True
Pareto Set outperforming the heuristic approach in most of
the studied figures of merits, (ii) highly reduced need for
specialized human resources due to the automatic nature of
the method and (iii) a wider variety of options. This last
feature is of special importance, since a richer set of
alternatives is offered to the network planners. In order to
select sub-sets of solutions which best fit the interests of the
user, an adaptive constrain philosophy is suggested. That
way, the network engineer may restrict the constraints to
reduce the number of solutions after having a good idea of the
whole Pareto solutions, searching forward only in the
redefined domain. This process may continue iteratively until
a good solution with an acceptable compromise among
objective functions is found [9].

As future work, new specialized (genetic and/or heuristic)
operators are being developed to locally improve reactive
compensation of a given individual. At the same time, other
objective functions (such as voltage stability margin) are
going to be studied. Finally, parallel asynchronous
computation using a network of computers is considered for
larger networks with more objective functions, given the huge
need of resources in order to optimize investments and energy
transmission in large real world systems.
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