UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA

Curso Preparatorio De Ingeniería (CPI)

PROGRAMA DE ASIGNATURA GEOMETRÍA ANALÍTICA

AÑO 2014

I. FUNDAMENTACIÓN

En esta disciplina se estudian las operaciones con vectores en dos y tres dimensiones. En ella se combinan el Álgebra y la Geometría. La importancia del estudio de la misma radica en que permite aplicar con eficacia los métodos algebraicos y permite representar gráficamente las ecuaciones algebraicas.

II. OBJETIVOS

OBJETIVOS GENERALES

- 1. Transferir el razonamiento lógico deductivo al razonamiento gráfico y viceversa.
- 2. Adquirir conocimiento básico del Álgebra vectorial, como instrumento para las demostraciones y deducciones propias a la materia y de otras asignaturas.
- 3. Mejorar la habilidad y aptitud de los alumnos para solucionar problemas.
- 4. Desarrollar capacidad de análisis
- 5. Utilizarla como herramienta de representación gráfica de los conjuntos numéricos y las expresiones algebraicas.

OBJETIVOS ESPECÍFICOS

- 1. Aplicar los conceptos involucrados con vectores en ejercicios y problemas.
- 2. Encontrar la ecuación algebraica que representa a unas condiciones dadas.
- 3. Encontrar el gráfico que corresponda a una ecuación o la ecuación que corresponde a un gráfico.
- 4. Comprender los conceptos de inclinación y pendiente de una recta. Identificar las ecuaciones.
- 5. Comprender el concepto de las cónicas con centro en el origen y trasladadas. Identificar las ecuaciones. Adquirir destrezas en el diseño de las mismas.
- 6. Manejar los distintos sistemas de coordenadas en el plano.

III. CONTENIDOS

PROGRAMA SINTÉTICO

Vectores. Segmento orientado. Definiciones. Clasificación de vectores. Operaciones con vectores (gráficamente). Interpretación física y geométrica. Angulo entre dos vectores. Sistema de coordenadas. Bases ortogonales. Sistema cartesiano ortogonal. Base canónica $\{i, j, k\}$. Descomposición de un vector en el espacio. Expresión analítica. Operaciones con vectores (analíticamente)

Producto de vectores. Producto escalar. Definición. Propiedades. Interpretación geométrica y física. Producto vectorial. Definición. Propiedades. Interpretación geométrica y física. Funciones. Definición. Clasificación. Funciones de una variable independiente. Gráfica de funciones de primer y segundo grado.

Recta en el plano. Ecuación vectorial. Vector direccional. Ecuaciones paramétricas, simétrica y general. Recta definida por dos puntos. Inclinación. Pendiente o coeficiente angular. Ecuaciones punto-pendiente y pendiente-ordenada al origen (ecuación explícita). Posiciones relativas de dos rectas. Ángulo entre dos rectas. Ecuación normal de la recta. Distancia de un punto a una recta. Distancias entre rectas paralelas. Aplicaciones a triángulos en el plano.

Sistemas de coordenadas. Ortogonales y polares; relaciones. Traslación y rotación de sistemas de coordenadas ortogonales.

Circunferencia. Definición. Elementos. Ecuaciones. Posiciones relativas con rectas. Cónicas con centro en el origen de coordenadas y trasladadas: Parábola. Definición, construcción. Elementos. Ecuaciones. Posiciones relativas con rectas. Elipse. Definición, construcción. Elementos. Ecuaciones. Posiciones relativas entre elipses y rectas. Hipérbola. Definición, construcción. Elementos. Ecuaciones. Posiciones relativas entre hipérbolas y rectas.

PROGRAMA ANALÍTICO

1. VECTORES

OBJETIVOS DEL CAPÍTULO

Al finalizar el capítulo el alumno estará en condiciones de:

- 1. Conocer y descomponer en el plano y en el espacio a los vectores.
- 2. Operar entre vectores y multiplicar escalares por vector, en forma analítica y gráfica.
- 3. Resolver ejercicios aplicando condiciones de paralelismo.

CONTENIDO DEL CAPÍTULO

- 1.1. Recta orientada. Eje.
- 1.2. Segmento orientado
 - 1.2.1. Segmento nulo, segmentos opuestos.
 - 1.2.2. Medida de un segmento.
 - 1.2.3. Dirección y sentido.
- 1.3. Vector
 - 1.3.1. Vectores iguales, nulos y opuestos.
 - 1.3.2. Vectores unitarios, versores.
 - 1.3.3. Vectores colineales.
 - 1.3.4. Vectores coplanares.
- 1.4. Operaciones con vectores
 - 1.4.1. Suma y diferencia de vectores. Método gráfico. Propiedades.
 - 1.4.2. Interpretación física
 - 1.4.2.1. Suma: resultantes de fuerzas, etc.
 - 1.4.2.2. Diferencia: desplazamientos, etc.
 - 1.4.3. Multiplicación por un número real.
 - 1.4.4. Angulo entre dos vectores.

- 1.5. Eje dirigido. Sistema de coordenadas. Coordenadas de un punto.
- 1.6. Bases ortogonales.
- 1.7. Sistema cartesiano ortogonal. Base canónica (i, j, k)
- 1.8. Descomposición de un vector en el espacio. Expresión analítica.
- 1.9. Vectores de posición.
- 1.10. Vector definido por dos puntos.
- 1.11. Operaciones con vectores
 - 1.11.1. Igualdad de vectores.
 - 1.11.2. Suma y diferencia de vectores. Método analítico. Propiedades.
 - 1.11.3. Multiplicación por un número real
 - 1.11.4. División de un segmento en una razón dada. Punto medio de un segmento.
 - 1.11.5. Condición de paralelismo de dos vectores.

2. PRODUCTOS DE VECTORES

OBJETIVOS DEL CAPÍTULO

Al finalizar el capítulo el alumno estará en condiciones de:

- Comprender el concepto y las propiedades de los productos definidos con los vectores.
- 2. Conocer la interpretación física y geométrica de los diferentes productos definidos con vectores.
- 3. Aplicar producto escalar, vectorial y mixto en la resolución de problemas.

CONTENIDO DEL CAPÍTULO

- 2.1. Producto escalar
 - 2.1.1. Definición. Propiedades.
 - 2.1.2. Módulo de un vector. Distancia entre dos puntos.
 - 2.1.3. Angulo entre dos vectores.
 - 2.1.4. Condición de ortogonalidad de dos vectores.
 - 2.1.5. Ángulos y Cosenos directores de un vector.
 - 2.1.6. Proyección de un vector sobre otro.
 - 2.1.7. Interpretación geométrica del producto escalar.
 - 2.1.8. Interpretación física del producto escalar: trabajo.
 - 2.1.9. Producto escalar en el plano.

2.2. Producto vectorial

- 2.2.1. Definición. Propiedades.
- 2.2.2. Interpretación geométrica del módulo del producto vectorial. Área del paralelogramo y del triángulo
- 2.2.3. Interpretación física del producto vectorial: momento.
- 2.2.4. Producto vectorial en el plano.

- 2.3. Producto mixto de tres vectores
 - 2.3.1. Definición. Propiedades
 - 2.3.2. Ejercicios.
 - 2.3.3. Interpretación geométrica del módulo del producto mixto.
 - 2.3.4. Ejercicios

3. RECTA EN EL PLANO

OBJETIVOS DEL CAPÍTULO

Al finalizar el capítulo el alumno estará en condiciones de:

- Comprender el concepto y las propiedades de los productos definidos con los vectores.
- Conocer la interpretación física y geométrica de los diferentes productos definidos con vectores.
- 3. Aplicar producto escalar, vectorial y mixto en la resolución de problemas.

CONTENIDO DEL CAPÍTULO

- 3.1. Ecuación vectorial de la recta. Vector direccional.
- 3.2. Ecuación paramétrica. Ecuación simétrica o cartesiana.
- 3.3. Ecuación implícita o general.
- 3.4. Recta definida por dos puntos.
- 3.5. Inclinación. Pendiente o coeficiente angular. Ecuaciones punto-pendiente y pendienteordenada al origen. Ecuación explícita. Pendiente de una recta que pasa por dos puntos
- 3.6. Posiciones relativas de dos rectas
 - 3.6.1. Rectas concurrentes.
 - 3.6.2. Rectas paralelas.
 - 3.6.3. Rectas perpendiculares.
- 3.7. Ángulo entre dos rectas.
- 3.8. Ecuaciones de rectas particulares
 - 3.8.1. Rectas que pasan por el origen de coordenadas
 - 3.8.2. Rectas paralelas al eje de abscisas
 - 3.8.3. Rectas paralelas al eje de ordenadas
 - 3.8.4. Pendiente y ordenada al origen de una recta dada su ecuación general
- 3.9. Ecuación segmentaria de la recta
- 3.10. Ecuación normal de la recta. Distancia de un punto a una recta. Distancias entre rectas paralelas.
- 3.11. Relaciones entre las ecuaciones: normal y general de una recta
- 3.12. Aplicaciones a triángulos en el plano: determinación de lados, medianas, mediatrices, bisectrices, alturas, vértices, ángulos, áreas.

Curso Preparatorio de Ingeniería CPI-2014 ASIGNATURA: GEOMETRÍA ANALÍTICA

4. SISTEMAS DE COORDENADAS

OBJETIVOS DEL CAPÍTULO

Al finalizar el capítulo el alumno estará en condiciones de:

- 1. Manejar los distintos sistemas de coordenadas en el plano.
- 2. Relacionar a los sistemas de coordenadas en el plano.
- 3. Incorporar en el estudio de las propiedades geométricas por métodos analíticos diferentes sistemas de coordenadas.

CONTENIDO DEL CAPÍTULO

- 4.1. Clasificación.
- 4.2. Sistema de ejes coordenados ortogonales.
- 4.3. Traslación del sistema de ejes coordenados ortogonales.
- 4.4. Rotación del sistema de ejes coordenados ortogonales.
- 4.5. Sistema de coordenadas polares
 - 4.5.1. Eje polar. Polo. Radio vector. Convenciones de signo para radios vectores y ángulos.
 - 4.5.2. Relación entre los sistemas de coordenadas cartesianas y polares.
 - 4.5.3. Vectores en coordenadas polares.
 - 4.5.4. Ecuación de la recta en coordenadas polares.
 - 4.5.5. Ecuación de las cónicas en coordenadas polares.

5. CÓNICAS

OBJETIVOS DEL CAPÍTULO

Al finalizar el capítulo el alumno estará en condiciones de:

- 1. Reconocer a las cónicas gráfica y analíticamente.
- 2. Diferenciar casos particulares de las cónicas con centro en el origen y trasladadas.
- 3. Construir graficas de las cónicas.
- 4. Resolver problemas que involucren intersección entre cónicas y rectas.

CONTENIDO DEL CAPÍTULO

5.1. Circunferencia

- 5.1.1. Definición. Elementos: centro, radio.
- 5.1.2. Ecuación de la circunferencia con centro conocido y radio dado.
- 5.1.3. Ecuación de la circunferencia que pasa por tres puntos.
- 5.1.4. Determinación del centro y radio de la circunferencia, dada su ecuación.
- 5.1.5. Casos particulares de circunferencias
 - 5.1.1.1. Con centro en el origen de coordenadas.
 - 5.1.1.2. Que pasa por el origen de coordenadas.
 - 5.1.1.3. Tangente al eje de abscisas.

- 5.1.1.4. Con radio nulo.
- 5.1.1.5. Con radios imaginarios.
- 5.1.6. Ecuación de la circunferencia en coordenadas polares.
- 5.1.7. Posiciones relativas entre circunferencias y rectas. Intersección de una circunferencia y una recta. Intersección entre circunferencias (eje radical)

5.2. Parábola

- 5.2.1. Definición, construcción.
- 5.2.2. Elementos: eje, foco, vértice, directriz, radio focal, excentricidad, lado recto.
- 5.2.3. Cuerda focal mínima de una parábola.
- 5.2.4. Ecuación de la parábola con vértice en el origen de coordenadas y foco en uno de los ejes coordenados.
- 5.2.5. Ecuación de la parábola con vértice fuera del origen de coordenadas y ejes paralelos a los ejes coordenados.
- 5.2.6. Ecuación general o implícita de la parábola.
- 5.2.7. Ecuación de la parábola en forma explícita.
- 5.2.8. Ecuación de la parábola en coordenadas polares.
- 5.2.9. Posiciones relativas entre parábolas y rectas. Intersección de una parábola y una recta; intersección entre parábolas cuyas ecuaciones estén expresadas en forma canónica.

5.3. Elipse

- 5.3.1. Definición, construcción.
- 5.3.2. Elementos: ejes, focos, vértices, centro, directrices, radios focales, excentricidad.
- 5.3.3. Longitud de la cuerda focal mínima de una elipse.
- 5.3.4. Ecuación de la elipse con centro en el origen de coordenadas y focos en uno de los ejes coordenados.
- 5.3.5. Ecuación de la elipse con centro fuera del origen de coordenadas y ejes paralelos a los ejes coordenados.
- 5.3.6. Ecuación general o implícita de la elipse.
- 5.3.7. Ecuación de la elipse en forma explícita
- 5.3.8. Ecuación de la elipse en coordenadas polares
- 5.3.9. Posiciones relativas entre elipses y rectas. Intersección de una elipse y una recta; intersección entre elipses cuyas ecuaciones estén expresadas en forma canónica.

5.4. Hipérbola

- 5.4.1. Definición, construcción.
- 5.4.2. Elementos: ejes, focos, vértices, centro, directrices, asíntotas, radios focales, excentricidad.
- 5.4.3. Longitud de la cuerda focal mínima de una hipérbola.
- 5.4.4. Ecuación de la hipérbola con centro en el origen de coordenadas y focos en uno de los ejes coordenados.
- 5.4.5. Ecuación de la hipérbola con centro fuera del origen de coordenadas y ejes paralelos a los ejes coordenados.
- 5.4.6. Ecuación general o implícita de la hipérbola.

- 5.4.7. Ecuación de la hipérbola en forma explícita.
- 5.4.8. Ecuación de la hipérbola en coordenadas polares.
- 5.4.9. Posiciones relativas entre hipérbolas y rectas. Intersección de una hipérbola y una recta; intersección entre hipérbolas cuyas ecuaciones estén expresadas en forma canónica.
- 5.5. Definición general de las cónicas por excentricidad.

IV.BIBLIOGRAFÍA

TEXTOS BÁSICOS

- Steinbruch Alfredo, Winterle Paulo. "Geometría Analítica". Editorial Mc Graw Hill Sao Paulo, 1987
- José Juan Ricart. "Vectores y Geometría Analítica". 1ª Ed. 2006
- Earl W. Swokowski. Álgebra, Trigonometría con Geometría Analítica. 2ª Edición Grupo Editorial Iberoamérica. 1.988

TEXTOS COMPLEMENTARIOS

- Walter Fleming y DaleVarberg."Álgebra y Trigonometría con Geometría Analítica 3ª Edición -Editorial Prentice Hall Hispanoamérica – 1.991
- Donato Di Pietro. "Geometría Analítica del plano y delespacio y Nomografía". Editorial Alsina, 1975
- Kletenik. "Problemas de Geometría Analítica". Editorial de Mir
- Kindle J. "Geometría Analítica", Editorial Mc GrawHill
- Francisco V. Pujol. Raimundo Sánchez. "Matemática Práctica II". Ed. 2004