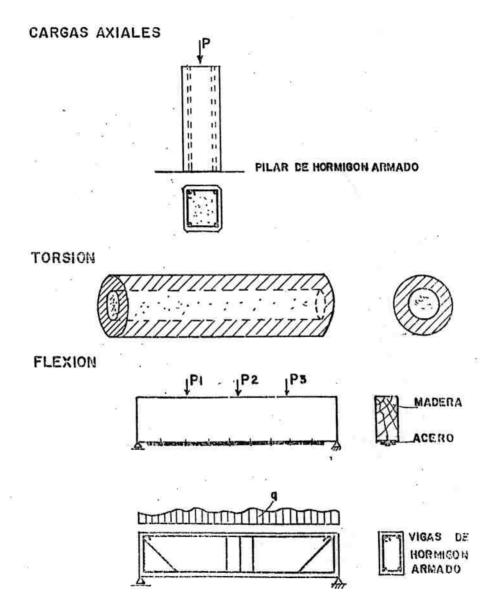
Vigas de 2 materiales

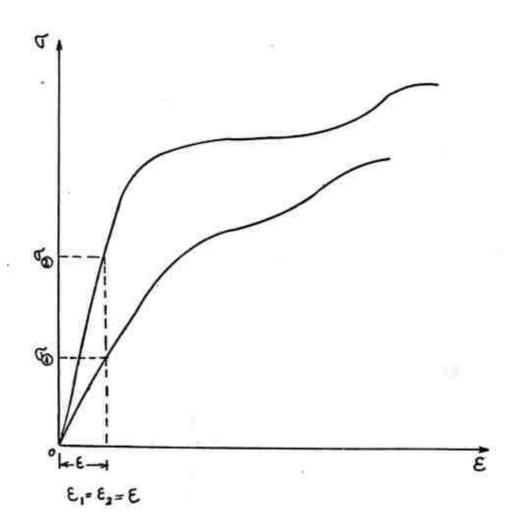
Clase 17

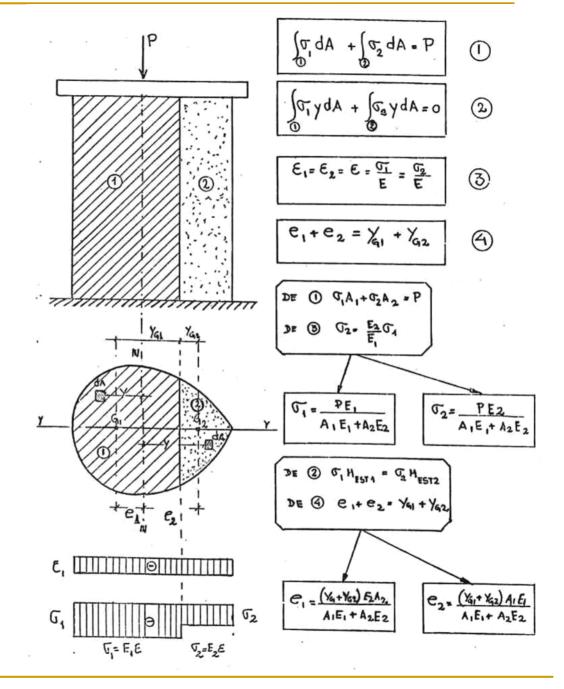
Método general, Método de la Sección Transformada, Tensiones de Corte, Flexión Compuesta, Desplazamientos.

BARRAS DE DOS MATERIALES

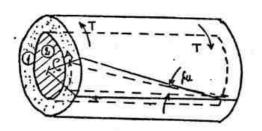


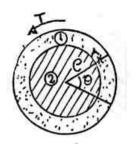
En vigas de dos materiales, en aquellos puntos en donde se le obligan a ambos materiales a trabajar juntos, a igual deformación corresponde tensiones diferentes

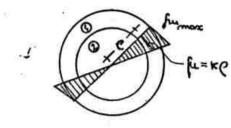




CASO1: CARGAS
PARALELAS AL EJE





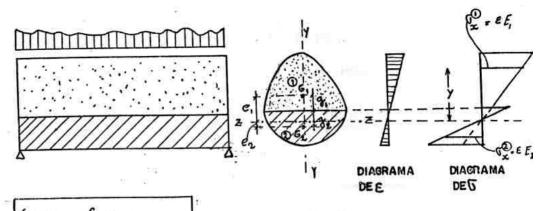


DIAAGRAMA DE 8

CASO 2:TORSION

DIAGRAMA DE (W

G,IP, +62IP2



CASO3: FLEXIÓN

$$\begin{bmatrix}
G_{x}^{0} dA + G_{x}^{0} dA & = 0 \\
G_{x}^{0} dA + G_{x}^{0} dA & = M
\end{bmatrix}$$

$$\begin{bmatrix}
G_{x}^{0} dA + G_{x}^{0} dA & = M \\
G_{x}^{0} dA + G_{x}^{0} dA & = M
\end{bmatrix}$$

$$\begin{bmatrix}
G_{x}^{0} dA + G_{x}^{0} dA & = M \\
G_{x}^{0} dA & = M
\end{bmatrix}$$

$$\begin{bmatrix}
G_{x}^{0} dA + G_{x}^{0} dA & = M \\
G_{x}^{0} dA & = M
\end{bmatrix}$$

$$\begin{bmatrix}
G_{x}^{0} dA + G_{x}^{0} dA & = M \\
G_{x}^{0} dA & = M
\end{bmatrix}$$

$$\begin{bmatrix}
G_{x}^{0} dA + G_{x}^{0} dA & = M \\
G_{x}^{0} dA & = M
\end{bmatrix}$$

$$\begin{bmatrix}
G_{x}^{0} dA + G_{x}^{0} dA & = M \\
G_{x}^{0} dA & = M
\end{bmatrix}$$

$$\begin{bmatrix}
G_{x}^{0} dA + G_{x}^{0} dA & = M \\
G_{x}^{0} dA & = M
\end{bmatrix}$$

$$\begin{bmatrix}
G_{x}^{0} dA + G_{x}^{0} dA & = M \\
G_{x}^{0} dA & = M
\end{bmatrix}$$

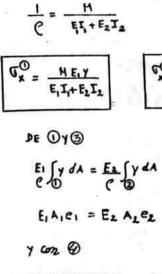
$$\begin{bmatrix}
G_{x}^{0} dA + G_{x}^{0} dA & = M \\
G_{x}^{0} dA & = M
\end{bmatrix}$$

$$\begin{bmatrix}
G_{x}^{0} dA + G_{x}^{0} dA & = M \\
G_{x}^{0} dA & = M
\end{bmatrix}$$

$$\begin{bmatrix}
G_{x}^{0} dA + G_{x}^{0} dA & = M \\
G_{x}^{0} dA & = M
\end{bmatrix}$$

$$\begin{bmatrix}
G_{x}^{0} dA + G_{x}^{0} dA & = M \\
G_{x}^{0} dA & = M
\end{bmatrix}$$

$$\begin{bmatrix}
G_{x}^{0} dA + G_{x}^{0} dA & = M \\
G_{x}^{0} dA & = M
\end{bmatrix}$$



DE @ 13

HE,Y E,I, + F,I,

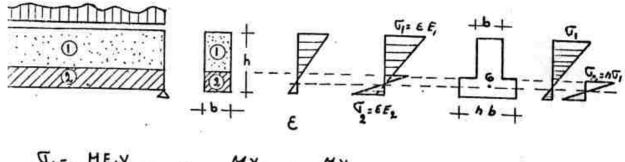
CARGAS PARALELAS AL EJE nA2=(nb) h2 df. JdA dFz= Cz dA dF = EE, dA dFz= EE2dA G=EE, dFz = EnE, dA dF2 = EE, (ndA) AREA EQUIVALENTE A (1) STIYEN = SEYEN FICTICIO $\frac{\nabla_2}{\nabla_1} = \frac{E_2}{E_1} = h$ σ, JydA - [x (ndA)

METODO DE LA SECCIÓN TRANSFORMADA

> SE DEBE ALTERAR EL ANCHO PORQUE LA DISTANCIA"Y" NO DEBE ALTERARSE

FLEXIÓN:

METODO DE LA SECCIÓN TRANSFORMADA



$$\frac{\overline{G}_{1} = \underbrace{\frac{HE_{1}V}{I_{2}E_{1}} + I_{2}E_{2}}_{I_{2}E_{1}} = \underbrace{\frac{HV}{I_{2}} + hI_{2}}_{I_{2}} = \underbrace{\frac{HV}{I_{TRANS}}}_{TRANS}$$

$$\frac{E_{2}}{E_{1}} = h = \underbrace{\overline{G}_{2}}_{G_{1}} \qquad I_{2} = \underbrace{\frac{bh^{3}}{\alpha}}_{\alpha} \qquad hI_{2} = \underbrace{(hb)}_{\alpha} \underbrace{h^{3}}_{\alpha}$$

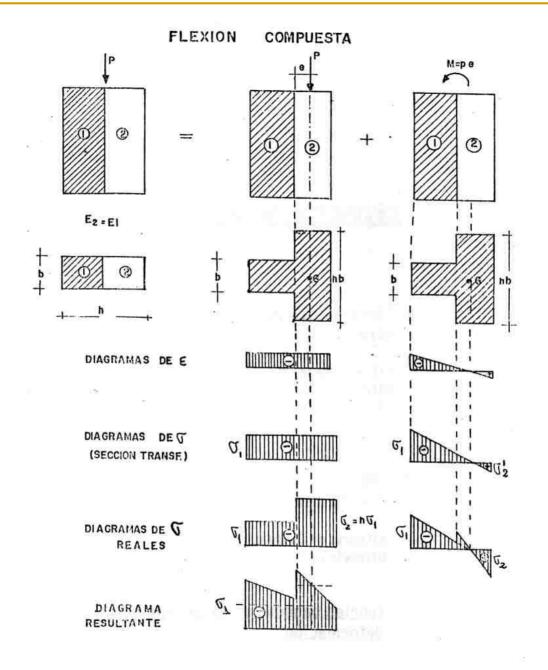
$$dF_1 = \sigma_1 dA = \underbrace{E_1 Y dA}_{AREA EQUIVALENTE AL MAT.}$$

$$dF_2 = \underbrace{G_2 dA}_{E_2 Y dA} = \underbrace{E_1 Y}_{C} (ndA)$$

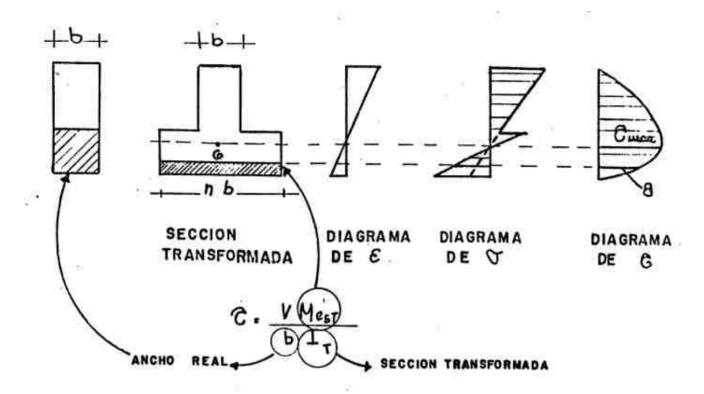
El Eje Neutro no cambiará si cada elemento del cuerpo 2 es multiplicado por un factor "n", siempre que no se altere la distancia "y" de cada uno de ellos al mismo eje. O sea: SOLO SE PUEDE VARIAR EL ANCHO

La resistencia de la Sección Transformada es la misma que la original

$$M = \int_{A} \sigma.y.dA = \int_{1} \sigma_{1}.y.dA + \int_{2} \eta.\sigma_{1}.y.dA = \frac{1}{\rho}.(E_{1}.I_{1} + E_{2}.I_{2})$$



TENSION DE CORTE EN LA FLEXIÓN



DEFORMACIONES

Las deformaciones y los desplazamientos se pueden determinar usando la Sección Transformada. Esta sección representa la sección recta de un elemento hecho de un material homogéneo que se deforma de la misma manera que el elemento compuesto

Próxima Clase: Estado plano de Tensiones

Fin