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MOTIVATION Drug side effects cause significant morbidity and mortality in healthcare. Side effects are
discovered and added to the drug label during randomized controlled trials, but, due to trials’ limited sample
sizes, severe side effects are often discovered after the drug enters the market. An important question is
whether we could use artificial intelligence to predict unknown side effects using the side effects identified
during drug clinical trials. We studied this problem and developed a machine learning framework for pre-
dicting side effects for drugs undergoing clinical development.
SUMMARY
Early and accurate detection of side effects is critical for the clinical success of drugs under development.
Here, we aim to predict unknown side effects for drugs with a small number of side effects identified in ran-
domized controlled clinical trials. Our machine learning framework, the geometric self-expressive model
(GSEM), learns globally optimal self-representations for drugs and side effects from pharmacological graph
networks. We show the usefulness of the GSEM on 505 therapeutically diverse drugs and 904 side effects
from multiple human physiological systems. Here, we also show a data integration strategy that could be
adopted to improve the ability of side effect prediction models to identify unknown side effects that might
only appear after the drug enters the market.
INTRODUCTION

Side effects of drugs are typically identified through randomized

controlled clinical trials. It is well known that many side effects

cannot be observed during clinical trials due to limitations in

sample size and time frames. Postmarketing surveillance pro-

grams, such as the Adverse Event Reporting System (AERS),

were designed to assist in the identification of side effects after

the drug entered the market. However, the late identification of

drug side effects is known to cause high morbidity and mortality

in public healthcare,1,2 the re-assessment of drug safety through

new clinical trials,3 and the possible withdrawal of drugs from the

market.4

A wide range of computational approaches have been pro-

posed to predict the side effects of drugs at different stages of

the drug development process (see reviews by Ho et al.5 and

Boland et al.6). The first group of methods is applicable during

pre-clinical drug development when only chemical, biological,

and pharmacological information is available. These methods

exploit chemical features,7–11 protein targets,12 and pathway
Cell Repo
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information,13 often in combination with protein networks,14

and, in general, they offer a modest accuracy. A second group

of methods was proposed for the postmarketing phase of drug

development.15–19 These methods exploit the side effects

collected in clinical trials and the postmarketing phase to predict

other unknown side effects. Our study differs from thesemethods

in that we assumed that only side effects identified during clinical

trials are available. This represents a more challenging scenario

due to information sparsity and selection bias.20,21 Our goal is

2-fold: (1) to simulate the realistic scenarios faced by safety pro-

fessionals working in clinical drug development and (2) to provide

a computational tool that can assist in the early detection of side

effects of drugs undergoing clinical trials.

A critical application of our approach is during the different

phases of clinical trials, where computational predictions can

be used as a hypotheses generator to set the direction of the

risk assessment. Our approach uses a matrix completion model

that we called the geometric self-expressive model (GSEM). This

is based on our objective function and multiplicative learning

algorithm, which learns globally optimal solutions. Our model
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exploits known drug side effect associations and integrates

graph structure information from chemical, biological, and phar-

macological data. Here, we also show that predicting side ef-

fects that were identified after the drug entered the market

from the information available during clinical trials is challenging.

We attributed this to a distribution shift in side effect reports be-

tween clinical trials and postmarketing. This observation moti-

vated a simple data integration technique that can be used to

significantly improve the performance of GSEM at identifying

side effects that might appear after the drug enters the market.
RESULTS

GSEM
Our starting point is the n3m drug side effect associationmatrix

X, where xij = 1 if drug i is known to induce side effect j, or xij = 0

otherwise. Drugs can be related by their similarities in chemical

structure, biological targets, and pharmacological activity. Side

effects can also be related by their similarities in anatomical/

physiological phenotypes. Our method integrates drug and

side effect information by learning two similarity matrices: a

drug similarity matrixH˛Rn3n such that XxHX and a side effect

similarity matrix W such that XxXW. The GSEM generates

scores for each drug-side effect pair by linearly combining these

models:

bX = HX +XW: (Equation 1)

The first term in Equation 1 is the drug self-representation

model, and the second term is the side effect self-representation

model. To learn W and H, we minimize the following objective

functions:

min
W

1

2
kX � XWk2F|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

self � representation

+
a

2
kWk2F +bkWk1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

sparsity

+
X
i

mi

2
kWk2D;Gi

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
smoothness

+gTrðWÞ|fflfflfflffl{zfflfflfflffl}
diagonal

such that WR 0

(Equation 2)

and

min
H

1

2
kX � HXk2F|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

self � representation

+
c

2
kHk2F +dkHk1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

sparsity

+
X
j

aj

2
kHk2D;Gj

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
smoothness

+ gTrðHÞ|fflfflffl{zfflfflffl}
null diagonal

such that HR 0

(Equation 3)

where k:kF denotes the Frobenius norm. We shall explain each

term in Equation 2 only, as the same rationale can be applied

to Equation 3. The first term in Equation 2 is the self-representa-

tion constraint, which aims at learning a self-representation ma-

trix W such that XW is a good reconstruction of the original ma-

trix X. The second term, in which a;b> 0 are constant values, is

the sparsity constraint, which uses the elastic-net regularization

known to impose sparsity and grouping effect.22,23 The third

term in Equation 2 is the smoothness constraint,24–26 incorpo-

rating geometric structure into the self-representation matrix W

from a given side effect similarity graph Gi, with Gi = ðf1; :::;
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mg;E i;AiÞ, i.e., the weighted undirected graph with edge weights

Aij > 0 if ði; jÞ˛ E and zero otherwise. The smoothness constraint

is important because it allow us to integrate into the model side

information about side effects in the form of graphs. For a given

side effect graph G, the idea is that nearby points in G should have

similar coefficients in W, which can be obtained by minimizing

X
i;j

Aijkwi � wjk2 = Tr
�
WLWT

�
: = kWk2D;G; (Equation 4)

wherewi andwj represent column vectors ofW and L = D � A is

the graph Laplacian with D = diagðPjaijÞ. The constant values

mi > 0 in Equation 2 weigh the importance of the smoothness

constraint for the prediction. When multiple graphs are com-

bined, the parameters mi in Equation 2 tell us about the contribu-

tion and importance of the individual graph information for the

prediction model. The fourth term in Equation 2 is a penalty for

diagonal elements to prevent the trivial solution W = I (the iden-

tity matrix). Typically, g[0 is used. The last constraint in Equa-

tion 2 is a non-negative constraint,27 which is added here to favor

interpretability of the learned W.

Figure 1 depicts an overview of our GSEM. The starting point is

the matrix X containing binary associations encoding the pres-

ence or absence of drug side effects. The GSEM learns the

self-representation matrices H and W that minimize our loss

functions in Equation 3 and 2, respectively, by employing an iter-

ative algorithm that uses a simple multiplicative update rule (see

STAR Methods). Our algorithm is inspired by the diagonally re-

scaled principle of non-negative matrix factorization.27 GSEM

is fast to run, and it does not require setting a learning rate or

applying a projection function. Our algorithm also satisfies global

guarantees of convergence given by the Karush-Kuhn-Tucker

(KKT) complementary conditions (proof in Methods S2). Having

learned independently H and W, we calculate bX = HX +XW.

Notice that while X contains binary values ½0;1� that correspond
to our original data, bX contains real positive numbers that are our

predicted scores.
Overview of evaluation
To obtain side effects identified in clinical trials, we followed the

procedure in Galeano et al.28 to retrieve side effects reported in

randomized controlled studies from the Side Effect Resource

(SIDER) 4.1.21 27,610 associations were obtained for n = 505

marketed drugs and m = 904 unique side effect terms. We

also collected side effects identified after the drugs entered the

market from two independent sources. 6,818 side effects

reported in the postmarketing section of drug leaflets were ob-

tained from the SIDER database (SIDER postmarket set).

25,797 statistically significant side effects reported in the AERS

were obtained from the OFFSIDES database29 (OFFSIDES post-

market set). The collection of drug side effect data used in our

study is shown in Figure 2A.

Our goal is to assess the performance of the GSEM at predict-

ing unknown side effects for drugs with a small number of side

effects identified in clinical trials. Therefore, only side effects

identified in clinical trials were used for training the model. Fig-

ure 2B illustrates how the clinical trials’ side effects were

randomly split into training, validation, and testing sets.
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Figure 1. Geometric self-expressive model (GSEM)

27,610 associations identified on clinical trials for 505 drugs and 904 side effects were collected from the SIDER 4.1 database. The associations were ar-

ranged into an n 3 m matrix X by encoding their presence ð = 1Þ. Unknown associations were encoded with zeros ð = 0Þ. Our algorithm learns two similarity

matrices that model the two pharmacological spaces of drug side effects. H (of size n 3 n) encodes similarities between drugs that are learned from drug

networks built from chemical, indication, target, and taxonomy similarities. W (of size m3 m) encodes similarities between side effects that are learned from

physiological relationships between side effects. The GSEM learns independently H and W such that XxHX and XxXW. By linearly combining these models,

HX +XW, we obtain bX , which models X, and where all the entries are replaced by real numbers—these are our predicted scores. Note that values replacing

zero entries in X will constitute our predictions. Rows of H are drug self-representations, and columns of W are side effect self-representations. The lower

illustration depicts how our model discovers a drug self-representation vector for the anti-diabetic drug metformin, and a self-representation vector for the

side effect myocardial infarction (MI), such that the dot product of these vectors with the binary vector corresponding to known drugs for MI and known side

effects of metformin, respectively, models the presence/absence of MI in patients on metformin. The body parts infographic vector was created by mac-

rovector www.freepik.com.
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Following previous approaches,15–19 we framed our problem as

a binary classification problem and used the area under the

receiving operating curve (AUROC). The validation set consisted

of 10% randomly held-out clinical trials side effects and

randomly selected negatives of twice the number of positives.

We used the validation set to tune the model hyperparameters.

We then performed the evaluation by training the model with

the combined training and validation sets using the optimal hy-

perparameters. We measure the AUROC and the area under

the precision-recall curve (AUPR) on three test sets (see Fig-

ure 2C): (1) a held-out test set from randomly selected side ef-

fects identified in clinical trials, (2) postmarketing side effects

from the SIDER database, and (3) postmarketing side effects

from the OFFSIDES database.

We compared the prediction performance of the GSEM with a

representative number of side effect prediction models that can

also be applied to our problem: (1) matrix factorization (MF);16 (2)

predictive pharmacosafety networks (PPNs);15 (3) inductive ma-

trix completion (IMC);17 and (4) feature graph-regularized MF

(FGRMF).18 Each side effect prediction model integrates

different types of complementary information about drugs and
side effects. We collected and used five types of side information

for our study. For drugs, we obtained the chemical structure and

protein targets from DrugBank,30 indications from the Drug

Repositioning Hub,31 and Anatomical, Therapeutic, and Chemi-

cal (ATC) classification (see STAR Methods). We used MACCS

fingerprints32 to represent chemical structure and computed Ta-

nimoto similarity using RDKit.33 For side effects, we obtained the

Medical Dictionary for Regulatory Activities (MedDRA) terminol-

ogy. To build graphs from the different side information, we

calculated the adjacency matrices using similarity measures

(see STAR Methods). For the ATC and MedDRA terms, we also

obtained their corresponding hierarchies to calculate taxonomy

similarities that have been used by previous approaches.15,17

Evaluation of prediction performance on multiple drugs
Figure 3A shows the AUROC performance of the side effect pre-

diction models at recovering missing drug-side effect associa-

tions in the held-out test set. Following a common practice in

the literature,15,17,18 we performed an ablation study. First,

whenever possible, each method was trained using only the

training matrix X without other side information (see first row in
Cell Reports Methods 2, 100358, December 19, 2022 3
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Figure 2. Evaluation procedure

(A) Drug side effect data were integrated from the SIDER 4.1 and OFFSIDES databases. They include a set of associations identified in clinical trials (red) and two

sets of associations identified after the drugs entered the market: a postmarketing set from SIDER (blue) and OFFSIDES (green).

(B) The clinical trials association set was randomly split into training, validation, and test sets. Hyperparameters of each prediction model were tuned using the

validation set. Each model was re-trained on the combined training and validation sets using optimal hyperparameters.

(C) Our test sets consisted of the held-out test set from the clinical trials set and the postmarketing sets from SIDER and OFFSIDES. Each positive set of

associations was matched with a set of negatives twice their size, randomly selected.
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Figure 3. Performance evaluation on multiple drugs

Each model (x axis) was trained with drug side effect associations obtained from clinical trials, without other information (first row, y axis), or in combination with

one side information type at a time (chemical, indication, target, and taxonomy similarities): second to fifth rows. Themethods that proposed amodel to integrate

multiple side information are indicated as the integration model in the last row of the heatmap. Area under the receiver operating curve (AUROC) is shown only for

the side information types used in the original publications of each competitor. Gray cells represent N/A. The binary classification performance is shown for three

independent test sets.

(A) (Red) Held-out test set containing other clinical trials side effects.

(B) (Blue) Postmarketing side effects from the SIDER database, containing side effects reported in package inserts that were identified after the drugs entered the

market.

(C) (Green) Postmarketing side effects from the OFFSIDES database, containing statistically significant side effects from the Adverse Event Reporting System

(AERS) surveillance database.

(D) Drug-specific performance according to its main category according to the Anatomical, Therapeutic, and Chemical (ATC) classification. (Left) AUROC in the

SIDER postmarket test set; (right) AUROC in the OFFSIDES postmarket test set.
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Figure 3A). Second, if possible, one side information at a time

together with X was integrated into the model to assess its

contribution to the overall performance (second to fifth rows in

Figure 3A). In these experiments, we run each method with the

side information types proposed in the original publications

(see Methods S1). Finally, if the original publications proposed

a way to integrate multiple information types (more than one) in

their framework, we implemented them, and their performance

is shown in the last row of Figure 3A. Notice that the GSEM, as

proposed in Equations 3 and 2, is amodel that allows for the inte-

gration of multiple types of heterogeneous information.

On the held-out test set with other side effects identified in

clinical trials, the GSEM outperforms all the competitors by

1.4%–13.3%. Even when training GSEM using the training ma-

trix X alone, i.e., without side information, the GSEM achieves

0.940 in terms of the AUROC. This baseline performance can

be slightly improved using side information for drugs and side ef-

fects. Other methods, such as PPNs15 and IMC,17 also show a

similar trend; therefore, side information should be used when

available. In addition, we observed that while the competitors’

performance ismore sensitive to the specific choice of side infor-

mation, the performance of the GSEM displays a small variability

across information types. The mean and SD AUROCs in the

held-out test set are 0.9421 ± 0.0012 (GSEM) versus 0.9079 ±

0.0207 (FGRMF), 0.8405 ± 0.0026 (IMC), and 0.9239 ± 0.0212

(PPNs). GSEM also consistently outperforms the competitors

in terms of the AUPR (Figure S1).

We then tested our method in a more realistic scenario using a

simulated prospective evaluation similar to the one used byCami

et al.15 In this procedure, all side effects identified after the drugs

entered the market were used as a test set (postmarket test sets

in Figure 2B). Figures 3B and 3C show the prediction perfor-

mance of the methods in postmarketing test sets. The GSEM

outperforms the competitors by 1.5%–14.8% in the SIDER post-

market test set and by 0.7%–4.6% in the OFFSIDES postmarket

test set.

Interestingly, the GSEM offers the best prediction performance

in both prospective sets when combining all available side infor-

mation. Following Cami et al.,15 we further asked whether the

performance of the models varies for drug- or side effect-specific

categories.We performed a second evaluationwherewe used the

best-performing models of each column of Figure 3A to analyze

the performance of a specific group of drugs and side effects

(see STAR Methods). Figure 3D shows the AUROC performance

of the models for drug-specific anatomical categories according

to their primary ATC classification. For most categories, the

GSEM’s mean AUROC was above 0.75 in the SIDER postmarket

test set—we obtained the lowest AUROC performance for ner-

vous system drugs (0.706) and the highest performance for respi-

ratory system drugs (0.852). In the OFFSIDES test set, the mean

AUROC was above 0.55 for all the categories. The performance

of themodels for the side effect-specificMedDRAcategory of dis-

orders are shown in Figure S2.

Distribution shifts in side effects reported before and
after the drugs enter the market
An important observation from Figures 3A–3C is that there is a

considerable difference in AUROCperformance when predicting
6 Cell Reports Methods 2, 100358, December 19, 2022
other side effects from clinical trials (GSEM AUROC of 0.944)

versus postmarketing (GSEM AUROCs of 0.728 and 0.618 in

the SIDER and OFFSIDES postmarket sets, respectively). These

differences cannot be explained by the specific method used or

the type of side information used in the integration. The differ-

ences in prediction performance prompted us to ask whether

they can be explained by a distribution shift in side effect reports

before and after the drug enters the market.

To analyze differences in reporting trends, we defined the ratio

of reporting frequency (RRF) as the normalized count of drugs

associated with a given side effect (see STAR Methods). The

RRF reflects whether a side effect has been associated with

many or few drugs in our dataset. For instance, nausea, a side

effect reported on most drugs, has an RRF of 1.0, while eye

infection, reported only on a few drugs, has an RRF of 0.011.

We contrasted the RRF of each side effect computed using clin-

ical trial associations versus postmarketing associations.

Figures 4A and 4B show that side effects reported in clinical trials

and postmarketing follow a different trend. A side effect reported

on a small number of drugs in clinical trials (low RRF in the x axis)

can be reported onmany drugs in the postmarketing phase. This

trend is even more prominent in the OFFSIDES postmarket set.

For comparison, the expected trend without distribution shift is

shown in Figure 4C for a held-out set from clinical trials associa-

tions (Pearson, r = 0:923, p < 2.23 3 10�308). Our results

suggest differences in reporting trends between drug side effect

associations reported in clinical trials and the postmarketing

phase.

We further explored whether there are statistically significant

differences in RRF values for drug anatomical classes and side

effect disorder types. We grouped drugs by their main ATC clas-

sification and compared distributions of RRF values based on

the known side effects reported in different sets (see STAR

Methods). Figure 4D shows that for the majority of drug cate-

gories, the side effects that were reported in clinical trials tend

to be biased toward frequently reported side effects except for

nervous system drugs. Conversely, while the SIDER postmarket

set tends to be more significant toward rarely reported side ef-

fects in clinical trials, the OFFSIDES set was more significant

for frequently reported side effects. We repeated our statistical

analysis by grouping side effects based on their main MedDRA

category of disorders. Figure 4E shows that side effect cate-

gories are significant toward rarely reported side effects, i.e.,

low RRF values.

A fundamental assumption in machine learning is that the

training and testing sets are drawn from the same underlying

distribution.34 Our analysis in Figure 4 shows that this is not

the case for our problem. We hypothesized that the distribution

shifts in side effect reports between clinical trials and postmar-

keting could explain the differences in prediction performance

that we observed in Figures 3A–3C. It would imply a depen-

dency between the AUROC performance and the RRF values

of the side effects in the test set. To explore this dependency

in more detail, we calculated AUROC values for single drugs

on the SIDER postmarket test set. Figure 5 shows a correlation

between prediction performance and the RRF values of the

side effects we are trying to predict. A positive correlation is

observed for all the methods, suggesting that each drug’s
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Figure 4. Differences in the distribution of side effect reports in clinical trials and postmarketing drug development phases

Side effect ratio of reporting frequency (RRF) is a normalized count of drugs associated with a given side effect. Each point represents a side effect, and the RRF

values of side effects identified in clinical trials are compared against (A) the RRF of of side effects identified in postmarketing as found in the SIDER database

(Pearson, r = 0:377, p < 5.1 3 10�3.2); (B) the RRF of side effects identified in postmarketing as found in the OFFSIDES database (Pearson, r = 0:192,

p < 6.4 3 10�9); and (C) the a held-out set (Pearson, r = 0:923, p < 2.23 3 10�308). The size of the circle is proportional to the RRF values.

(D and E) Statistical analysis of side effect RRF significance for (D) ATC group of drugs and (E) MedDRA-group of side effects. Only statistically significant

associations are shown (one-tailed Wilcoxon rank-sum test with Benjamini-Hochberg adjusted significance, p < 0.05). The circle size represents the significance

(p value), and the color encodes the effect size of the association—the difference between themedian in the group compared with the median of all drugs (or side

effects). Colors separated the effect size to indicate whether the one-tailed significance was right-tailed (red palette) or left-tailed (blue palette).
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Figure 5. Dependency between prediction performance and side effect RRF value
Eachmodel generated scores by training with clinical trials’ side effects and side information. Models were then assessed, for each drug, in their ability to identify

the presence or absence of postmarketing side effects (SIDER postmarket test set) out of all the unknown side effects for the drug. Each dot in the figure

represents an individual drug. The performance per drug is shown in the AUROC (y axis) versus themedian RRF of the side effects in the test set (x axis). There is a

direct correlation between the prediction performance of the each model and the median RRF value of the side effects in the test set: MF (Pearson

correlation, r = 0:53; p< 3:543 10� 16); IMC ðr = 0:51; p < 1:40 3 10�14Þ; PPNs ðr = 0:55; p < 2:85 3 10�17Þ; FGRMF ðr = 0:45; p < 2:50 3 10�11Þ; and
GSEM ðr = 0:68; p < 4:11 3 10� 28Þ. Each point represents a drug, and the circle’s size is proportional to the median RRF.
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prediction performance depends on the magnitude of the distri-

bution shift.

Reported side effects inOFFSIDEShave even lower RRF values

than those in SIDER (see Figure S3), thus explaining the differ-

ences in AUROC performance between SIDER and OFFSIDES

postmarket sets in Figures 3B and 3C, and Figure S4 shows

that the AUROC per drug varies by category depending on the

RRF values of the side effects in the postmarketing test sets.

A data integration technique to improve prediction
performance
We propose a simple data integration technique to improve the

prediction performance of side effect prediction models for indi-

vidual drugs. Our idea is based on the observation that the effect

of the distribution shift can be reduced if we integrate postmar-

keting data into the training matrix X. Figure 6B shows that the

RRF values of specific side effects can be improved using post-

marketing information in training.

Figure 6A illustrates our evaluation procedure for single drugs.

For a given drug x, we used its clinical trials side effects for
8 Cell Reports Methods 2, 100358, December 19, 2022
training and its combined SIDER and OFFSIDES postmarketing

side effects for testing. Then, we assessed the AUROC perfor-

mance using two strategies that differ in the information used

for the other drugs. The first strategy uses only side effect asso-

ciations reported in clinical trials. The second strategy uses side

effect associations reported in clinical trials and postmarketing.

To prevent data leakage, we removed other chemically similar

drugs from the training matrix X (see STAR Methods). Notice

that for both strategies, we trained each method using the

same set of optimal hyperparameters obtained in the validation

set, as shown in Figure 2.

Figures 6B and 6C shows the AUROC performance of the

side effect prediction models using strategies 1 and 2. The in-

clusion of the postmarketing side effects for the other drugs

used for training dramatically affected the prediction perfor-

mance for single drugs. The mean AUROC improved from

0.604 to 0.667 for MF; 0.512 to 0.537 for IMC; 0.596 to 0.650

for FGRMF; 0.60 to 0.733 for PNN; and 0.616 to 0.746 for the

GSEM. Our method shows a 13% performance improvement

using strategy 2.



A

B C

Figure 6. A data integration strategy for predicting postmarketing side effects for drugs in clinical trials

(A) Evaluation procedure for single drugs to predict side effects identified after the drugs enter the market (postmarketing) using for training side effects identified

in clinical trials. For a given drug x, we performed two evaluation strategies that change the set of associations used for the other drugs in X: (1) uses only clinical

trials side effects and (2) uses clinical trials and postmarketing side effects. Side effects chemically similar to drug xwere removed from the trainingmatrix to avoid

data leakage (illustrated as drugs u and v).

(B) Comparison of side effect RRF values when using only clinical trials associations (x axis) and when also including also the postmarketing associations (y axis).

Each point represents a side effect, and the circle’s size is proportional to the RRF when including postmarketing side effects. Several side effect terms are

indicated.

(C) Boxplots of the AUROC per drug on the combined postmarketing test sets using strategies 1 and 2. The distribution of AUROC values for the GSEM using

strategy 2 is significantly better than that of the best competitor (PPN) (one-tailed Wilcoxon rank-sum test p < 0.0015).
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Self-representations capture biological relationships
Two propertiesmake theGSEMan interpretable and reproducible

model. First, the GSEM is interpretable because the predicted

score can be explained in terms of learned similarities between

drugs and side effects. Second, the GSEM’s solutions are repro-

ducible because the learned solution is a globally optimal solution

of its objective function. TheGSEMovercomes the commonprob-

lem of machine learningmodels that learn different solutions even

when training the same model with a different random initializa-

tion, which is persistent in deep-learning models.35

The GSEM’s predicted score for a drug i and side effect j can

be written as follows:

bXij =
X

u ˛drugs known to
cause side effect j

Hiu +
X

v ˛ side effects caused
by drug i

Wvj; (Equation 5)

where H and W are non-negative. The first term in Equation 5

contains the learned similarities between drug i and the drugs

known to cause side effect j. The second term in Equation 5 con-

tains the learned similarities between side effect j and the side

effects known to be caused by drug i. If any of the individual

terms in the sum is high, the prediction score bXij will be high

because the model allows only for summation and not the sub-

traction of terms.

We hypothesized that the learned H can capture biological re-

lationships between drugs. Following a similar procedure to

Cheng et al.,36 we assessed whether our drug similarity mea-

sure, defined as ðH +HT Þ=2 (see STARMethods), reflects known

chemical, biological, and pharmacological relationships be-

tween drugs. To be sure that there is no information leakage,

we trained the GSEM using all available clinical trials and post-

marketing information (encoded in X) but without any side infor-

mation (i.e., mi = aj = 0ci; j) (see STAR Methods). We found

that our drug similarity based onH correlates with chemical, indi-

cation, target, and ATC taxonomy similarities (Figure 7B). Inter-

estingly, our drug similarity was also indicative that the drugs

were pharmacologically similar (ATC taxonomy similarity above

0.05) or distinct (below 0.05). Our results suggest that the matrix

H in our model could capture chemical, biological, and pharma-

cological relationships between drugs.

We also testedwhetherW could capture the anatomical/phys-

iological relationships between side effect phenotypes, as

defined by the MedDRA taxonomy similarity (see STAR

Methods). We defined side effect similarities based on W as

ðW +WT Þ=2 (see STAR Methods). We found that the side effect

similarities based on W correlate with the MedDRA taxonomy

similarity (Figure 7B, bottom). We observed that phenotypically

similar side effects tend to have similar self-representations.

The similarity also indicates whether side effects are anatomi-

cally/physiologically similar (MedDRA taxonomy similarity above

0.05) or distinct (below 0.05).

To showcase how the learnedmatrices allow for interpretability,

we explored the weights inW for two side effects: (1) myocardial

infarction (MI), which has been associated with the withdrawal of

many drugs from the market,4 and (2) blurred vision. Figure 7A

shows a diagram of the side effects that are more similar to MI

and blurred vision based on the weights in W. We observed that

MI is very similar to other vascular-related disorders, including
10 Cell Reports Methods 2, 100358, December 19, 2022
angina pectoris, which has been shown to appear prior to MI.37

46 drugs in our dataset are known to be associated with both

angina pectoris and MI, which might explain the learned associa-

tion. On the other hand, blurred vision, which is classified in

MedDRA as both an eyes and nervous system disorder, is also

very similar to other related conditions, including psychiatric disor-

ders. The learned matrixW allows for a transparent inspection of

how the model arrived at a given prediction. If a drug is known to

induce MI, our model predicts that the drug might also induce

similar side effects, as shown in Figure 7A.

DISCUSSION

Here, we introduced the GSEM, a computational approach for

predicting the side effects of drugs during clinical drug develop-

ment. Instead of waiting for postmarketing observational evi-

dence to be accumulated, our framework can be used to assist

drug safety professionals in the identification of side effects dur-

ing drug clinical trials. To show this, we trained the models with

side effects identified in clinical trials and tested them to predict

side effects identified in the postmarketing phase. To our knowl-

edge, this is the first attempt to predict the presence or absence

of side effects for drugs with a small number of side effects iden-

tified in clinical trials. Our framework can be used together with

our recent approach to predict the frequencies of drug side ef-

fects in patients.28 These tools can be helpful in the early detec-

tion of rare side effects that cannot be effectively captured in

small-size clinical trials.

Our analysis indicated that predicting side effects that were

identified after the drugs entered the market is difficult when

training only with side effects identified during clinical trials.

Part of this difficulty lies in the differences in the distribution

of side effects reported in clinical trials and in postmarketing.

Scarcely reported side effects during clinical trials tend to be

highly reported in postmarketing, thus explaining the models’

difficulty at predicting them. We further studied this issue by

analyzing the dependency between the number of drugs

associated with a side effect (RRF value) and the prediction

performance of machine learningmodels (see Figure 5). Our ex-

periments showed that the prediction performance of the

models heavily depended on the RRF value of the side effects

we were aiming to predict. Strikingly, improving the RRF value

of each side effect by adding information from postmarketing

reports was more critical for improving the prediction of post-

marketing side effects than the use of any drug or side effect

features.

The problem of distribution shift in side effect reports is deeply

connected to the intrinsic distributional properties of drug side

effects. In a previous study,28 we have shown that drug side ef-

fect reports follow a long-tailed distribution. The distribution can

be summarized in a Pareto 80/30 rule, where 80% of the associ-

ations come from 30% of the side effects.28 Unfortunately, this

means that the amount of labeled information (captured by

RRF), vital for machine learning models, varies per side effect,

following an almost exponential distribution. It would be essen-

tial to consider the dependency between prediction perfor-

mance and side effect RRF when evaluating computational

models that aim to predict drug side effects.
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Figure 7. Self-representations capture chemical, biological, and pharmacological relationships

(A) Diagram representing how vision blurred andMI (bottom) are self-represented with other side effects (top). Only side effects with self-representations weights

above 0.05 are shown. The thickness of the connections is proportional to the self-representation weights in W. The colors in the outer circle represent the

disorder category of the side effect according to the Medical Dictionary for Regulatory Activities (MedDRA) terminology.

(B) The interplay between the drug self-representation similarity and four types of drug-drug similarities: chemical, indications, target, and ATC taxonomy. The

bottom figure shows the interplay between the side effect self-representation similarity and the MedDRA taxonomy similarity. Mean values of chemical (mean

similarity of 0.3689), indications (0.0134), drug target (0.0076), ATC taxonomy (0.0576), and MedDRA taxonomy (0.0488) similarities are shown as dashed

horizontal lines.
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An innovative aspect of our algorithm is that it learns similarities

between drugs (matrix H) and between side effects (matrix W).

Ourmodel is fundamentally different fromprevious side effect pre-

diction models. A PPN15 is a network-based method that builds

topological features from the bipartite drug-side effect graph.

The graph is obtained when connecting the nodes representing

drugs to the set of nodes representing side effects. PPNs also

integrate chemical, taxonomic, and biological features and then

use a logistic regression model to predict. MF16 is a matrix

decomposition model that learns a low-dimensional feature vec-

tor for each drug and a low-dimensional feature vector for each

side effect such that the dot product between the vectors models
an entry in X. It amounts to a low-rank approximation of X. Simi-

larly, FGRMF18 uses several low-rank approximation models for

each drug side information graph that are integrated into the

model using the smoothness constraint.24–26 The final FGRMF

score is the probability given the logistic regression that combines

the scores of the individual low-rank models. Finally, IMC17 is an

IMC model that integrates drugs and side effect features in the

matrix decomposition model. A detailed description of the math-

ematical formulation of each competitor, togetherwith their imple-

mentation and optimization, can be found in Methods S1.

GSEM builds upon the recent development of high-rank matrix

completion based on self-expressive models (SEM)38 and sparse
Cell Reports Methods 2, 100358, December 19, 2022 11
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linear methods,39 as well as the recent trend of deep learning on

graphs.26,40,41 SEMs represent data points, e.g., drugs, approxi-

mately as a linear combination of a few other data points. Elhami-

far38proposedSEMsasa framework for simultaneously clustering

and completing high-dimensional data lying in the union of low-

dimensional subspaces. It has been shown that SEMs generalize

over standard low-rank matrix completion models,42,43 which

might explain why the GSEM outperforms previous approaches

that have been proposed to predict drug side effects based on

low-rank matrix decomposition.16–18 Self-representations natu-

rally allow the integration of graph-based information about drugs

or side effects. Our model is also related to non-negative MF

(NMF).27,44 They differ, however, in two main aspects. First, while

NMF learns two low-rank matrices to represent the input data,

the GSEM learns a single null-diagonal matrix that allows for a

high-rank matrix.38 Second, while the NMF objective function is

non-convex, we proved that our objective function is convex and

that our algorithm converges to a globally optimal solution.

Our framework could be easily applied to proprietary data-

sets of drug side effects by following our procedure illustrated

in Figure 2. The GSEM is fast to run, and its prediction perfor-

mance is robust to the specific choice of hyperparameters

(see our analysis in Figure S5). Applying our model for a com-

pound undergoing clinical trials is as easy as adding the new

compound information in a new row in X. We started investi-

gating the potential of the GSEM for drug repositioning,45 and

we envision applying our algorithm to other open problems in

biology, chemistry, and medicine, such as drug target predic-

tion46 or antiviral drug effect prediction.47 To assist scientists

working in clinical drug development in their difficult task, we

provide the code to run our algorithm (https://github.com/

paccanarolab/GSEM), the predictions for the 505 drugs used

in our study (supplementary dataset 4 in Galeano and Pacca-

naro48), and the learned matrices that can help to interpret

the predictions (supplementary datasets 5 and 6 in Galeano

and Paccanaro48).

Whenever machine learningmodels support high-stakes deci-

sions, it is desirable to have inherently interpretable models.49

We have shown that the learned matrices in our model capture

biological and pharmacological relationships between drugs

and physiological relationships between side effect phenotypes.

However, the medical, biological, or pharmacological interpreta-

tion of the relationships requires expert biological and medical

knowledge. In the supplemental information, we also discussed

the differences between the interpretability capabilities of the

GSEM and our latent factor model for predicting the frequencies

of drug side effects28 (see Methods S3).

Limitations of the study
We run our method only for drugs with at least five side effects

identified in clinical trials. A limitation of expanding our analysis

is the lack of standardized datasets that classify side effects de-

pending on the phase of the clinical trial in which it was identified.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:
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of publication.
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METHOD DETAILS

Datasets
Clinical side effects

Weused the dataset collected in our previous study of the frequencies of drug side effects.28 Clinical side effects correspond to those

drug side effect associations with an associated frequency from randomized controlled studies in the Side effect Resource (SIDER)

database version 4.121. 27,610 associations were found between the 505 drugs and 904 unique side effect terms. Each side effect

term was mapped to a Medical Dictionary for Regularity Activities (MedDRA) Preferred-Term. A detailed explanation of the data pro-

cessing can be found in the Supplementary Note 1 in Galeano et al.28
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Postmarketing side effects

Two test sets of postmarketing side effects were collected. The first set was obtained from the SIDER 4.1 database,21 fromwhich we

retrieved 6,818 postmarket associations (labels ‘postmarketing’ in SIDER) – it corresponds to side effects reported in the postmar-

keting section of drug’s leaflets. The second set was obtained from the OFFSIDES database,29 from which we retrieved 25,797

‘‘significant’’ associations - it corresponds to statistically significant postmarketing side effects reported in the Adverse Event Report-

ing System (AERS).

Drug-target interactions

We retrieved the known drug-target interactions from DrugBank release 5.130. Wemapped the drugs from SIDER to DrugBank using

the PubChem IDs and the mapping provided in DrugBank. We retrieved molecular targets (section ‘targets’ of DrugBank) for the 505

drugs in our dataset. In total, 1,983 associations were found between the 505 drugs and 755 unique protein targets.

Chemical fingerprints

We retrieved the known drug SMILES notations from DrugBank release 5.130. For the 505 drugs in our dataset, we could obtain a

binary MACCS fingerprint using the open source RDKit python library.33 MACCS are 167 bit structural key descriptors in which

each bit is associated with an SMARTS pattern.32

Drug indications

We retrieved drug indications from the Drug Repositioning Hub database31 (accessed on 05/02/2020). Drug indications in the Drug

Repositioning Hub were manually annotated. In total, 1,021 associations were found between the 505 drugs and 354 unique

indications.

ATC information

We retrieved Anatomical, Therapeutic and Chemical (ATC) codes for each of the 505 drugs from the WHO proprietary dataset

release 2018.

The datasets and similarity values used to implement GSEM are provided in Supplementary Dataset 1, 2 and 3.

Side effect ratio of reporting frequency (RRF)
The side effect ratio of reporting frequency is a normalized count of the number of drugs associated with a given side effect. For a

given side effect j, the RRFðjÞ is defined as follow:

RRFðjÞ =

Pn
i xij
Z

(Equation 6)

where xij in the entry ði; jÞ of the matrix X, n is the total number of drugs, and Z = maxfPn
i xi1;

Pn
i xi2;.;

Pn
i ximg is the maximum num-

ber of associations for the side effects. When using only drug side effect associations from clinical trials, Z = 375.

Similarities in side information graphs
To build the graphs for drugs, we computed similarities from the side information features. Given a set of feature elements U asso-

ciated with drug u (e.g. chemical fingerprints) and a set of feature elements V associated with drug v, the Jaccard similarity between u

and v is given by:

J ðu; vÞ =
jVXUj
jVWUj (Equation 7)

where j:j denotes the cardinality of the sets. The Jaccard similarity is bounded 0%J ðu;vÞ%1.

The Jaccard similarity was used for the chemical, indication and target drug features. Three weighted and symmetric adjacency

matrices Achem;AInd;ADT were then obtained for each side information type. The Jaccard similarity of the chemical fingerprints is also

known as the 2D Tanimoto Chemical similarity.

For the ATC side information, we followed Cami et al.15 and calculated taxonomy similarities between drugs based on the shortest

path between their set of ATC codes in the ATC hierarchy. ATC has four different levels, and each drug was annotated by its corre-

sponding ATC codes in the lower level of the hierarchy. Given two drugs u and v, the ATC taxonomy similarity between the drugs was

then calculated as follow:

TAXATCðu; vÞ = 1 � SPðATCu;ATCvÞ
maxði;jÞ˛USPðATCi;ATCjÞ (Equation 8)

where ATCu and ATCu correspond to the set of ATC codes of drug u and v, respectively; SPðATCu;ATCvÞ is a function that calculates

the shortest path between the set of ATC annotations; and U is the set of drugs. In the ATC hierarchy, the smallest value of the short-

est path between drugs is 2 and the largest is 8. The ATC taxonomy similarity between two drugs is a number between 0 and 1. We

also obtained an adjacency matrix between drugs ðAATCÞ based on the ATC taxonomy similarity.

In total, four drug graphs were used in our model in Equation 2. The adjacency matrices for each of those graphs correspond to

Achem;AInd;ADT and AATC. For side effects, we used one side information only in Equation 3. We computed the MedDRA taxonomy

similarity using the MedDRA hierarchy following the same procedure used for calculating the ATC taxonomy similarity.
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Model selection and evaluation for multiple drugs
To evaluate each model for multiple drugs, we built a held-out test set by randomly sampling 10% of the known associations

in X containing clinical trials side effects. The held-out test set contained 2,761 associations (positive class). To obtain the zeros for

the test set (negative class), we randomly sampled twice the number of positives from the zero entries of X that were not in the test

set. To set each of the model parameters, we randomly sampled 10% of the remaining entries in X, and placed them on a validation

set. The negative class for the validation setwas also build by the same negative sampling procedure used for the held-out test set. The

validation set contained 2,484 associations and the training set contained 22,365 associations. We used the validation set for model

selection. Model parameters were selected according to the Area Under the Receiver Operating Curve (AUROC) in the validation set.

The details of the implementation of each model and the grid search for the model parameters is explained in Methods S1.

To assess the performance of themodels in the held-out test set, we used the best set of parameters for eachmodel and re-trained

the models using all the combined training and validation sets. Then, the model was used to assess the performance in the held-out

test set. To assess the performance of the model in the postmarketing test sets, we trained themodel with the best set of parameters

obtained from the validation set and by considering all the available data from clinical trials, that is, a total of 27,610 associations. In

our evaluations for multiple drugs, we also reported the Area Under the Precision-Recall Curve (AUPR).

Performance evaluation for single drugs
When evaluating the performance of our method on single drugs, we trained the model using the following parameters a = 60;

b = 0;mchem = 0:1;mInd = 0:5;mDT = 0:01;mATC = 5;g = 104;c = 40;d = 0:5; aMedDRA = 0:5. The procedure for each case

presented in the manuscript is as follow:

Evaluation by groups of drugs

We trained our method using only clinical trials side effects. The performance of the model was then assessed for each drug on

whether the model was able to predict the postmarketing side effects from of all the possible side effects – these correspond to

the entries in a row of X that had values of zeros in training. We performed this evaluation for drugs with at least ten associations

in the testing sets. We used the area under the receiving operating curve (AUROC) to measure the performance of the model. The

performance was then reported by grouping drugs according to their main Anatomical, Therapeutic and Chemical (ATC) categories.

Evaluation by groups of side effects

We followed the same procedure described for groups of drugs. The difference is that for side effects, we assessed the performance

for each side effect, by predicting postmarketing associations for a given column of X. The performance was then reported by

grouping side effects based on their main MedDRA category of disorders.

Evaluation when including postmarketing associations in training

For each drug, we used its clinical trials side effects for training and used its SIDER and OFFSIDES postmarketing side effects for

testing. For the remaining drugs in X, we also included its SIDER and OFFSIDES postmarketing associations. To prevent biases

in the evaluation due to the presence of drug analogs, we removed the drugs in X that were above a Tanimoto chemical similarity

threshold of 0.6 – this threshold had been used before to separate chemically similar from dissimilar drugs.50

Multiplicative learning algorithm
To minimize Equations 2 and 3 subject to the non-negative constraints W;HR0, we developed efficient multiplicative algorithms

inspired by the diagonally re-scaled principle of non-negative matrix factorization.27,44 The algorithm consists in iteratively applying

the following multiplicative update rules:

wij)wij

�
XTX +

P
kmkWAk

�
ij�

XTXW +
P

kmkWDk + aW +b+gI
�
ij

(Equation 9)
hij)hij

�
XXT +aAMedDRAH

�
ij�

XXTH+aDMedDRAH+ cH+d +gI
�
ij

(Equation 10)

where W and H are initialized as random dense matrices uniformly distributed in the range ½0; 0:01�. The stopping criteria of our al-

gorithmwas based on themaximum tolerance of the relative change in the elements ofW andH. The default value was TolX < 10� 2,

that occurred typically in about 50 iterations.

We proved that the iterative application of Equations 9 and 10 converges to a global optimal solution point by showing that the

multiplicative learning rule satisfies the Karush-Khun-Tucker (KKT) conditions of convergence and that the objective functions are

convex (Proofs in Methods S2).

Self-representation similarity

Given the drug self-representation matrix H, we defined the similarity between drugs as follow:

SH =
�
H + HT

��
2 (Equation 11)
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The similarity between side effects was defined similarly:

SW =
�
W + WT

��
2 (Equation 12)
Interpretability procedure
Following Cheng et al.,36 we analyzed whether the drug self-representation similarities, as captured by SH, capture the known

chemical, biological and pharmacological relationships between drugs. For chemical relationships we used the 2D Tanimoto chem-

ical similarity between drugs, for biological we used drug targets similarities, and for pharmacological relationship, we used the ATC

Taxonomy and indications similarities. We also analyzed whether the side effect self-representation similarities, as captured by SW ,

reflects the physiological relationship between the side effect phenotypes. For this analysis, we used the MedDRA taxonomy

similarity.

To analyze the self-representations, we trained our model without side information graphs, i.e. with the parameters a = 70;b = 0;

mchem = 0;mInd = 0;mDT = 0;mATC = 0;g = 104;c = 30;d = 0:5;aMedDRA = 0. We trained the model using all the available data

(clinical trials and postmarketing side effects), that is, using 59,497 associations. We then binned the drug and side effect self-rep-

resentation similarity matrices, SW and SH, and checked the values of the side information similarities corresponding to each specific

bin. The bins used were 0 � 0:05;0:05 � 0:1;0:1 � 0:2 and > 0:2.

QUANTIFICATION AND STATISTICAL ANALYSIS

One-tailedWilcoxon SumRank Test Significance was used in the reportedP-values. To analyze the significance of the RRF values for

a given drug or side effect category, we adjusted the p values using the Benjamini-Hochberg method to keep the overall significance

level below 0.05.
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